As newborn screening programs transition from paper-based data exchange toward automated, electronic methods, significant data exchange challenges must be overcome. This article outlines a data model that maps newborn screening data elements associated with patient demographic information, birthing facilities, laboratories, result reporting, and follow-up care to the LOINC, SNOMED CT, ICD-10-CM, and HL7 healthcare standards. The described framework lays the foundation for the implementation of standardized electronic data exchange across newborn screening programs, leading to greater data interoperability. The use of this model can accelerate the implementation of electronic data exchange between healthcare providers and newborn screening programs, which would ultimately improve health outcomes for all newborns and standardize data exchange across programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.