We present a study of an actively stabilized optically pumped semiconductor laser operating single frequency at a wavelength of 1015 nm. In free running operation, the laser exhibits a single frequency output power of 15 W with a linewidth of 995 kHz for a sampling time of 1 s. The intensity and the frequency of the laser were independently stabilized to reach a laser linewidth of only 4 kHz for the same sampling time. To identify and reduce the different sources of noise, the relative intensity noise and frequency noise spectral density are investigated under various conditions.
A nanoparticle (NP) doping technique was used for making erbium-doped fibers (EDFs) for high energy lasers. The nanoparticles were doped into the silica soot of preforms, which were drawn into fibers. The Er luminescence lifetimes of the NP-doped cores are longer than those of corresponding solution-doped silica, and substantially less Al is incorporated into the NP-doped cores. Optical-to-optical slope efficiencies of greater than 71% have been measured. Initial investigations of stimulated Brillouin scattering (SBS) have indicated that SBS suppression is achieved by NP doping, where we observed a low intrinsic Brillouin gain coefficient, of ~1× 10 -11 m/W and the Brillouin bandwidth was increased by 2.5x compared to fused silica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.