Within the context of carbon dioxide (CO2) utilization there is an increasing interest in using CO2 as a resource to produce sustainable liquid hydrocarbon fuels. When these fuels are produced by solely using solar energy they are labeled as solar fuels. In the recent discourse on solar fuels intuitive arguments are used to support the prospects of these fuels. This paper takes a quantitative approach to investigate some of the claims made in this discussion. We analyze the life cycle performance of various classes of solar fuel processes using different primary energy and CO2 sources. We compare their efficacy with respect to carbon mitigation with ubiquitous fossil-based fuels and conclude that producing liquid hydrocarbon fuels starting from CO2 by using existing technologies requires much more energy than existing fuels. An improvement in life cycle CO2 emissions is only found when solar energy and atmospheric CO2 are used. Producing fuels from CO2 is a very long-term niche at best, not the panacea suggested in the recent public discourse.
Today, almost 70% of the electricity is produced from fossil fuels and power generation accounts for over 40% of global CO 2 emissions. If the targets to reduce climate change are to be met, substantial reductions in emissions are necessary. Compared to other sectors emission reductions in the power sector are relatively easy to achieve because it consists mainly of point-sources. Carbon Capture and Storage (CCS) and the use of low-carbon alternative energy sources are the two categories of options to reduce CO 2 emissions. However, for both options additional infrastructure and equipment is needed. This article compares CO 2 emissions and metal requirements of different low-carbon power generation technologies on the basis of Life Cycle Assessment. We analyze the most critical output (CO 2 ) and the most critical input (metals) in the same methodological framework. CO 2 emissions and metal requirements are compared with annual global emissions and annual production for different metals. It was found that all technologies are very effective in reducing CO 2 emissions. However, CCS and especially non-fossil technologies are substantially more metal intensive than existing power generation. A transition to a low-carbon based power generation would require a substantial upscaling of current mining of several metals.
Purpose A large proportion of the environmental impacts of a technology is determined by decisions made at the early development stages. Therefore, effective approaches to grasp the potential environmental performance of a technology early in development are needed. This paper reflects on the usefulness of ex ante application of LCA using a case study on the appraisal of the potential environmental impacts of a lab-scale novel process for bioleaching of e-waste for metal recovery. Methods The LCA framework was applied at an early stage to the novel bioleaching process to embed it in a life cycle context, linking it to upstream and downstream flows. Then, a short-term future scaled-up scenario was defined using a proxy technology and estimated data. Environmental hotspots of this scenario were identified, and its environmental impacts were compared with those of a current industrial pyrometallurgical technique, involving an integrated smelter refinery. Results and discussion LCA displays potential environmental hotspots related to energy and material inputs for the bioleaching process and solvents for copper recovery, despite uncertainties. Comparison with an existing integrated smelter refinery technology returned an inferior environmental performance. These results could not be considered accurate given the early-stage application, yet they served as valuable preliminary information. The uncertainties also prompted further enquiry about the chosen product system boundary, the role of the emerging technology and the comparability of the technologies. Conclusions The ex ante application of life cycle assessment on an emerging technology brings a systematic rigour and discipline to an ambiguous situation at the start of technological development. Applying the LCA framework broadens the scope of the research, introducing a systems approach and long-term view. Environmental aspects and alternative perspectives on the novel technology are also brought into the research domain. The approach creates new knowledge on the novel technology's potential development, and developmental challenges are given definition at an early stage. The LCA outcomes should not be regarded as a final result but have a signalling purpose as a contribution to technological development. Though imprecise with much conjecture involved, such an approach gives a valid mock-up of a plausible future providing useful provisional insights to be built upon. Applying ex ante LCA and an exploratory scenario to an emerging technology is of great service as a developmental design tool and can be further refined in later development stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.