We investigate the impact of uncertainty in the metallicity-specific star formation rate over cosmic time on predictions of the rates and masses of double compact object mergers observable through gravitational waves. We find that this uncertainty can change the predicted detectable merger rate by more than an order of magnitude, comparable to contributions from uncertain physical assumptions regarding binary evolution, such as mass transfer efficiency or supernova kicks. We statistically compare the results produced by the COMPAS population synthesis suite against a catalog of gravitational-wave detections from the first two Advanced LIGO and Virgo observing runs. We find that the rate and chirp mass of observed binary black hole mergers can be well matched under our default evolutionary model with a star formation metallicity spread of 0.39 dex around a mean metallicity Z that scales with redshift z as Z = 0.035×10 −0.23z , assuming a star formation rate of 0.01×(1+z) 2.77 /(1+((1+ z)/2.9) 4.7 ) M Mpc −3 yr −1 . Intriguingly, this default model predicts that 80% of the approximately one binary black hole merger per day that will be detectable at design sensitivity will have formed through isolated binary evolution with only dynamically stable mass transfer, i.e., without experiencing a common-envelope event.
Double neutron stars (DNSs) have been observed as Galactic radio pulsars, and the recent discovery of gravitational waves from the DNS merger GW170817 adds to the known DNS population. We perform rapid population synthesis of massive binary stars and discuss model predictions, including DNS formation rates, mass distributions, and delay time distributions. We vary assumptions and parameters of physical processes such as mass transfer stability criteria, supernova natal kick distributions, remnant mass prescriptions and common-envelope energetics. We compute the likelihood of observing the orbital period-eccentricity distribution of the Galactic DNS population under each of our population synthesis models, allowing us to quantitatively compare the models. We find that mass transfer from a stripped post-helium-burning secondary (case BB) onto a neutron star is most likely dynamically stable. We also find that a natal kick distribution composed of both low (Maxwellian σ = 30 km s −1 ) and high (σ = 265 km s −1 ) components is preferred over a single high-kick component. We conclude that the observed DNS mass distribution can place strong constraints on model assumptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.