Isopentenyl diphosphate:dimethylallyl diphosphate isomerase (EC 5.3.3.2) catalyzes the antarafacial [1.3] allylic rearrangement of isopentenyl diphosphate (IPP) to its electrophilic allylic isomer dimethylallyl diphosphate (DMAPP). Active-site thiols at C138 and C139 were recently identified by covalent modification using active-site-directed irreversible inhibitors [Street, I. P., & Poulter, C. D. (1990) Biochemistry 29, 7531-7538; Lu, X. J., Christensen, D. J., & Poulter, C. D. (1992) Biochemistry 31, 9955-9960]. Kinetic studies were conducted with site-directed mutants of IPP isomerase (IPPIase) to evaluate the roles of these amino acids. C138S and C138V mutants were active catalysts with V/K values only 10-fold lower than that of wild-type IPPIase. In contrast, the C139S mutant was a poor catalyst, and the C139A and C139V mutants were inactive. Treatment of the C139S mutant with 3-(fluoromethyl)-3-butenyl diphosphate, an electrophilic active-site-directed irreversible inhibitor, resulted in inactivation of the enzyme by covalent modification of E207. The E207Q and E207V mutants were inactive, suggesting a role for the E207 carboxylate moiety in catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.