A prototype adaptive automatic control algorithm was implemented to regulate temperatures measured at several points in a tumour by adjusting the power applied to several ultrasound transducers. The goal was to control the temperatures under the elements of a mosaic applicator individually without any priori knowledge of which probes are under which elements. The control algorithm was devised for clinical applications where the position of each probe with respect to the heat sources is difficult to determine precisely. Instead, the program 'learns' the relationship between the inputs (power levels) and the outputs (temperatures) automatically. Based on the observed transfer function relating the power at m sources to the temperatures n probes, where n and m are not necessarily the same, a new method was used to implement a feedback controller. This method simplifies the design of the controller for a multiple-input/multiple-output (MIMO) system, while taking into account the coupling that may exist between the various elements of the system. As a result of using an adaptive scheme, the regulator continuously tracks changes in the system, such as blood flow variations or patient motion, by modifying its control parameters. The algorithm performance has been tested in simulations as well as experiments in dog thigh and a perfused kidney model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.