Distinct spatiotemporal patterns of actomyosin contractility are often associated with particular epithelial tissue shape changes during development. For example, a planar polarized pattern of myosin II localization regulated by Rho1 signaling during Drosophila body axis elongation is thought to drive the cell behaviors that contribute to convergent extension. However, it is not well understood how specific aspects of a myosin localization pattern influence the multiple cell behaviors — including cell intercalation, cell shape changes, and apical cell area fluctuations — that simultaneously occur within a tissue during morphogenesis. Here, we use optogenetic activation (optoGEF) and deactivation (optoGAP) of Rho1 signaling to perturb the myosin pattern in the germband epithelium during Drosophila axis elongation and analyze the effects on contractile cell behaviors within the tissue. We find that uniform photoactivation of optoGEF or optoGAP is sufficient to rapidly override the endogenous myosin pattern, abolishing myosin planar polarity and reducing cell intercalation and convergent extension. However, these two perturbations have distinct effects on junctional and medial myosin localization, apical cell area fluctuations, and cell packings within the germband. Activation of Rho1 signaling in optoGEF embryos increases myosin accumulation in the medial-apical domain of germband cells, leading to increased amplitudes of apical cell area fluctuations. This enhanced contractility is translated into heterogeneous reductions in apical cell areas across the tissue, disrupting cellular packings within the germband. Conversely, inactivation of Rho1 signaling in optoGAP embryos decreases both medial and junctional myosin accumulation, leading to a dramatic reduction in cell area fluctuations. These results demonstrate that the level of Rho1 activity and the balance between junctional and medial myosin regulate apical cell area fluctuations and cellular packings in the germband, which have been proposed to influence the biophysics of cell rearrangements and tissue fluidity.
Rapid epithelial tissue flows are essential to building and shaping developing embryos. However, it is not well understood how the mechanical properties of tissues and the forces driving them to flow are jointly regulated to accommodate rapid tissue remodeling. To dissect the roles of actomyosin in the mechanics of epithelial tissue flows, here we use two optogenetic tools, optoGEF and optoGAP, to manipulate Rho/Rho-kinase signaling and actomyosin contractility in the germband epithelium, which flows via convergent extension during Drosophila body axis elongation. The ability to perturb actomyosin across the tissue allows us to analyze the effects of actomyosin on cell rearrangements, tissue tensions, and tissue mechanical properties. We find that either optogenetic activation or deactivation of Rho1 signaling and actomyosin contractility at the apical surface of the germband disrupts cell rearrangements and tissue-level flows. By probing mechanical tensions in the tissue using laser ablation and predicting tissue mechanical properties from cell packings, we find that actomyosin influences both the anisotropic forces driving tissue flow and the mechanical properties of the tissue resisting flow, leading to complex relationships between actomyosin activity and tissue-level flow. Moreover, our results indicate that changes in the distribution of medial and junctional myosin in the different perturbations alter tissue tension and cell packings in distinct ways, revealing how junctional and medial myosin have differential roles in promoting and orienting cell rearrangements to tune tissue flows in developing embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.