Local adaptation, the differential success of genotypes in their native versus foreign environments, can influence ecological and evolutionary processes, yet its importance is difficult to estimate because it has not been widely studied, particularly in the context of interspecific interactions. Interactions between ectomycorrhizal (EM) fungi and their host plants could serve as model system for investigations of local adaptation because they are widespread and affect plant responses to both biotic and abiotic selection pressures. Furthermore, because EM fungi cycle nutrients and mediate energy flow into food webs, their local adaptation may be critical in sustaining ecological function. Despite their ecological importance and an extensive literature on their relationships with plants, the vast majority of experiments on EM symbioses fail to report critical information needed to assess local adaptation: the geographic origin of the plant, fungal inocula, and soil substrate used in the experiment. These omissions limit the utility of such studies and restrict our understanding of EM ecology and evolution. Here, we illustrate the potential importance of local adaptation in EM relationships and call for consistent reporting of the geographic origin of plant, soil, and fungi as an important step towards a better understanding of the ecology and evolution of EM symbioses.
Aim
At continental scales, abiotic factors such as climate are typically used to explain differences in plant ranges. Although biotic interactions also underlie the biogeography of plants, the importance of plant‐associated microbes is often overlooked when predicting ranges. In particular, symbiotic microbes may influence the distribution of plants that engage in strong interactions with them. We tested whether seedling response to inoculation by ectomycorrhizal fungi explains range size of trees. To examine mechanisms underlying the relationship between range size and response to inoculation, we also examined to what extent sympatry between host and fungi influenced this relationship.
Location
Global.
Time period
Contemporary.
Major taxa studied
Trees and fungi forming ectomycorrhizas.
Methods
Using a dataset of 1,275 observations from 126 papers, we calculated mean biomass response (effect size) of 59 tree species to fungal inoculation. We extracted host range area from digitized maps of native distributions, and determined whether hosts were naturally sympatric with fungal species used as inoculum by searching herbaria databases with geospatially referenced data.
Results
Tree species with seedling effect sizes falling above or below the average response tended to have small ranges and those with average responses, large ranges. Moreover, hosts inoculated with fungi whose ranges were allopatric to their own had higher biomass compared to those that were inoculated by sympatric fungi, suggesting that the extent of geographical overlap between trees and symbiotic fungi may attenuate the mutualism.
Main conclusions
We demonstrate that mycorrhizas may underlie host biogeographical patterns at the continental scale. Our study is novel in the scope of species and scale tested, and points to a possible mechanism underlying this pattern related to the process of mutualism breakdown accruing over time at local geographical scales. For ectomycorrhizal tree species, performance may increase when exposed to fungal partners without a recent shared evolutionary history.
Selection for specialized coevolutionary relationships can arise if generalized opportunistic pollinators, while still delivering some pollen, operate as less effective pollen delivery agents. Nevertheless, generalization could buffer high-latitude communities from loss of specialist pollinator species by providing some pollination service. Currently, there is limited understanding of the ecosystem services provided by generalized pollinators and whether they increase the fitness of the plants they visit. Network data and thorough observations of floral visitors, paired with estimates of seed set, offer some insight into the role of generalists, which in turn can inform us about how plants are likely to respond to ecosystem disturbances, such as losses of some pollinators, or changes in land cover. Here, we report on plant-pollinator visitation networks in Canada with high levels of generalization and examine the effects of generalization on seed set under different disturbance histories. We also then take a case study of one crop wild relative, Rubus arcticus or Arctic raspberry, and report on a near-complete characterization of pollinator interactions in different environmental conditions. Our findings indicate that generalized pollinators, though frequent and robust to variable temperatures and moisture conditions, do not appear to play a strong role in increasing the reproductive output of many plant species, and may provide only a weak buffer against the stronger effects of disturbance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.