Distributed protocols should be robust to both benign malfunction (e.g. packet loss or delay) and attacks (e.g. message replay) from internal or external adversaries. In this paper we take a formal approach to the automated synthesis of attackers, i.e. adversarial processes that can cause the protocol to malfunction. Specifically, given a formal threat model capturing the distributed protocol model and network topology, as well as the placement, goals, and interface (inputs and outputs) of potential attackers, we automatically synthesize an attacker. We formalize four attacker synthesis problems -across attackers that always succeed versus those that sometimes fail, and attackers that attack forever versus those that do not -and we propose algorithmic solutions to two of them. We report on a prototype implementation called KORG and its application to TCP as a case-study. Our experiments show that KORG can automatically generate well-known attacks for TCP within seconds or minutes.
In model checking, when a given model fails to satisfy the desired specification, a typical model checker provides a counterexample that illustrates how the violation occurs. In general, there exist many diverse counterexamples that exhibit distinct violating behaviors, which the user may wish to examine before deciding how to repair the model. Unfortunately, obtaining this information is challenging in existing model checkers since (1) the number of counterexamples may be too large to enumerate one by one, and (2) many of these counterexamples are redundant, in that they describe the same type of violating behavior. In this paper, we propose a technique called counterexample classification. The goal of classification is to partition the space of all counterexamples into a finite set of counterexample classes, each of which describes a distinct type of violating behavior for the given specification. These classes are then presented as a summary of possible violating behaviors in the system, freeing the user from manually having to inspect or analyze numerous counterexamples to extract the same information. We have implemented a prototype of our technique on top of an existing formal modeling and verification tool, the Alloy Analyzer, and evaluated the effectiveness of the technique on case studies involving the well-known Needham-Schroeder protocol with promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.