Background and Aims Anthracyclines can cause cancer therapy related cardiac dysfunction (CTRCD). We aimed to assess whether statins prevent decline in LVEF in anthracycline-treated patients at increased risk for CTRCD. Methods In this multicenter double-blinded, placebo-controlled trial, patients with cancer at increased risk of anthracycline-related CTRCD (per ASCO guidelines) were randomly assigned to atorvastatin 40 mg or placebo once-daily. Cardiovascular magnetic resonance (CMR) imaging was performed before and within 4 weeks-after anthracyclines. Blood biomarkers were measured at every cycle. The primary outcome was post-anthracycline LVEF, adjusted for baseline. CTRCD was defined as a fall in LVEF by > 10% to < 53%. Secondary endpoints included left ventricular (LV) volumes, CTRCD, CMR tissue characterization, high sensitivity troponin I (hsTnI), and B-type natriuretic peptide (BNP). Results We randomized 112 patients (56.9 ± 13.6 years, 87 female, 73 with breast cancer): 54 to atorvastatin and 58 to placebo. Post-anthracycline CMR was performed 22 (13–27) days from last anthracycline dose. Post-anthracycline LVEF did not differ between the atorvastatin and placebo groups (57.3 ± 5.8% and 55.9 ± 7.4%, respectively) when adjusted for baseline LVEF (p = 0.34). There were no significant between-group differences in post-anthracycline LV end-diastolic (p = 0.20) or end-systolic volume (p = 0.12), CMR myocardial edema and/or fibrosis (p = 0.06 to 0.47), or peak hsTnI (p ≥ 0.99) and BNP (p = 0.23). CTRCD incidence was similar (4% versus 4%, p ≥ 0.99). There was no difference in adverse events. Conclusions In patients at increased risk of CTRCD, primary prevention with atorvastatin during anthracycline therapy did not ameliorate LVEF decline, LV remodeling, CTRCD, change in serum cardiac biomarkers, or CMR myocardial tissue changes. Trial registration: NCT03186404.
ImportanceThere is a growing interest in understanding whether cardiovascular magnetic resonance (CMR) myocardial tissue characterization helps identify risk of cancer therapy–related cardiac dysfunction (CTRCD).ObjectiveTo describe changes in CMR tissue biomarkers during breast cancer therapy and their association with CTRCD.Design, Setting, and ParticipantsThis was a prospective, multicenter, cohort study of women with ERBB2 (formerly HER2)–positive breast cancer (stages I-III) who were scheduled to receive anthracycline and trastuzumab therapy with/without adjuvant radiotherapy and surgery. From November 7, 2013, to January 16, 2019, participants were recruited from 3 University of Toronto–affiliated hospitals. Data were analyzed from July 2021 to June 2022.ExposuresSequential therapy with anthracyclines, trastuzumab, and radiation.Main Outcomes and MeasuresCMR, high-sensitivity cardiac troponin I (hs-cTnI), and B-type natriuretic peptide (BNP) measurements were performed before anthracycline treatment, after anthracycline and before trastuzumab treatment, and at 3-month intervals during trastuzumab therapy. CMR included left ventricular (LV) volumes, LV ejection fraction (EF), myocardial strain, early gadolinium enhancement imaging to assess hyperemia (inflammation marker), native/postcontrast T1 mapping (with extracellular volume fraction [ECV]) to assess edema and/or fibrosis, T2 mapping to assess edema, and late gadolinium enhancement (LGE) to assess replacement fibrosis. CTRCD was defined using the Cardiac Review and Evaluation Committee criteria. Fixed-effects models or generalized estimating equations were used in analyses.ResultsOf 136 women (mean [SD] age, 51.1 [9.2] years) recruited from 2013 to 2019, 37 (27%) developed CTRCD. Compared with baseline, tissue biomarkers of myocardial hyperemia and edema peaked after anthracycline therapy or 3 months after trastuzumab initiation as demonstrated by an increase in mean (SD) relative myocardial enhancement (baseline, 46.3% [16.8%] to peak, 56.2% [18.6%]), native T1 (1012 [26] milliseconds to 1035 [28] milliseconds), T2 (51.4 [2.2] milliseconds to 52.6 [2.2] milliseconds), and ECV (25.2% [2.4%] to 26.8% [2.7%]), with P &lt;.001 for the entire follow-up. The observed values were mostly within the normal range, and the changes were small and recovered during follow-up. No new replacement fibrosis developed. Increase in T1, T2, and/or ECV was associated with increased ventricular volumes and BNP but not hs-cTnI level. None of the CMR tissue biomarkers were associated with changes in LVEF or myocardial strain. Change in ECV was associated with concurrent and subsequent CTRCD, but there was significant overlap between patients with and without CTRCD.Conclusions and RelevanceIn women with ERBB2-positive breast cancer receiving sequential anthracycline and trastuzumab therapy, CMR tissue biomarkers suggest inflammation and edema peaking early during therapy and were associated with ventricular remodeling and BNP elevation. However, the increases in CMR biomarkers were transient, were not associated with LVEF or myocardial strain, and were not useful in identifying traditional CTRCD risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.