Intractable focal epilepsy is a devastating disorder with profound effects on cognition and quality of life. Epilepsy surgery can lead to seizure freedom in patients with focal epilepsy; however, sometimes it fails due to an incomplete delineation of the epileptogenic zone. Brain networks in epilepsy can be studied with resting-state functional connectivity analysis, yet previous investigations using functional magnetic resonance imaging or electrocorticography have produced inconsistent results. Magnetoencephalography allows non-invasive whole-brain recordings, and can be used to study both long-range network disturbances in focal epilepsy and regional connectivity at the epileptogenic zone. In magnetoencephalography recordings from presurgical epilepsy patients, we examined: (i) global functional connectivity maps in patients versus controls; and (ii) regional functional connectivity maps at the region of resection, compared to the homotopic non-epileptogenic region in the contralateral hemisphere. Sixty-one patients were studied, including 30 with mesial temporal lobe epilepsy and 31 with focal neocortical epilepsy. Compared with a group of 31 controls, patients with epilepsy had decreased resting-state functional connectivity in widespread regions, including perisylvian, posterior temporo-parietal, and orbitofrontal cortices (P < 0.01, t-test). Decreased mean global connectivity was related to longer duration of epilepsy and higher frequency of consciousness-impairing seizures (P < 0.01, linear regression). Furthermore, patients with increased regional connectivity within the resection site (n = 24) were more likely to achieve seizure postoperative seizure freedom (87.5% with Engel I outcome) than those with neutral (n = 15, 64.3% seizure free) or decreased (n = 23, 47.8% seizure free) regional connectivity (P < 0.02, chi-square). Widespread global decreases in functional connectivity are observed in patients with focal epilepsy, and may reflect deleterious long-term effects of recurrent seizures. Furthermore, enhanced regional functional connectivity at the area of resection may help predict seizure outcome and aid surgical planning.
Objective-A burgeoning area of research has focused on motivational deficits in schizophrenia, producing hypotheses about the role that motivation plays in the well-known relationship between neurocognition and functional outcome. However, little work has examined the role of motivation in more complex models of outcome that include social cognition, despite our increased understanding of the critical role of social cognition in community functioning in schizophrenia, and despite new basic science findings on the association between social cognitive and reward processing in neural systems in humans. Using path analysis, we directly contrasted whether motivation 1) causally influences known social cognitive deficits in schizophrenia, leading to poor outcome or 2) mediates the relationship between social cognitive deficits and outcome in this illness.Method-Ninety one patients with schizophrenia or schizoaffective disorder completed interviewbased measures of motivation and functional outcome as well as standardized measures of neurocognition and social cognition in a cross-sectional design.Results-In line with recent research, motivation appears to mediate the relationship between neurocognition, social cognition and functional outcome. A model with motivation as a causal factor resulted in poor fit indicating that motivation does not appear to precede neurocognition.Conclusions-Findings in the present study indicate that motivation plays a significant and mediating role between neurocognition, social cognition, and functional outcome. Potential psychosocial treatment implications are discussed, especially those that emphasize social cognitive and motivational enhancement.
We investigated whether intensive computerized cognitive training in schizophrenia could improve working memory performance and increase signal efficiency of associated middle frontal gyri (MFG) circuits in a functionally meaningful manner. Thirty schizophrenia participants and 13 healthy comparison participants underwent fMRI scanning during a letter N-back working memory task. Schizophrenia participants were then randomly assigned to either 80 hours (16 weeks) of cognitive training or a computer games control condition. After this intervention, participants completed a second fMRI N-back scanning session. At baseline, during 2-back working memory trials, healthy participants showed the largest and most significant activation in bilateral MFG, which correlated with task performance. Schizophrenia participants showed impaired working memory, hypoactivation in left MFG, and no correlation between bilateral MFG signal and task performance. After training, schizophrenia participants improved their 2-back working memory performance and showed increased activation in left MFG. They also demonstrated a significant association between enhanced task performance and right MFG signal, similar to healthy participants. Both task performance and brain activity in right MFG after training predicted better generalized working memory at 6-month follow-up. Furthermore, task performance and brain activity within bilateral MFG predicted better occupational functioning at 6-month follow-up. No such findings were observed in the computer games control participants. Working memory impairments in schizophrenia and its underlying neural correlates in MFG can be improved by intensive computerized cognitive training; these improvements generalize beyond the trained task and are associated with enduring effects on cognition and functioning 6 months after the intervention.
Motivation deficits are common in schizophrenia, but little is known about underlying mechanisms, or the specific goals that people with schizophrenia set in daily life. Using neurobiological heuristics of pleasure anticipation and effort assessment, we examined the quality of activities and goals of 47 people with and 41 people without schizophrenia, utilizing Ecological Momentary Assessment. Participants were provided cell phones and called four times a day for seven days, and were asked about their current activities and anticipation of upcoming goals. Activities and goals were later coded by independent raters on pleasure and effort. In line with recent laboratory findings on effort computation deficits in schizophrenia, relative to healthy participants, people with schizophrenia reported engaging in less effortful activities and setting less effortful goals, which were related to patient functioning. In addition, patients showed some inaccuracy in estimating how difficult an effortful goal would be, which in turn was associated with lower neurocognition. In contrast to previous research, people with schizophrenia engaged in activities and set goals that were more pleasure-based, and anticipated goals as being more pleasurable than controls. Thus, this study provided evidence for difficulty with effortful behavior and not anticipation of pleasure. These findings may have psychosocial treatment implications, focusing on effort assessment/effort expenditure. For example, in order to help people with schizophrenia engage in more meaningful goal pursuits, treatment providers may leverage low-effort pleasurable goals by helping patients to break down larger, more complex goals into smaller, lower-effort steps that are associated with specific pleasurable rewards.
Primary progressive aphasia is a syndrome characterized by progressive loss of language abilities with three main phenotypic clinical presentations, including logopenic, non-fluent/agrammatic, and semantic variants. Previous imaging studies have shown unique anatomic impacts within language networks in each variant. However, direct measures of spontaneous neuronal activity and functional integrity of these impacted neural networks in primary progressive aphasia are lacking. The aim of this study was to characterize the spatial and temporal patterns of resting state neuronal synchronizations in primary progressive aphasia syndromes. We hypothesized that resting state brain oscillations will show unique deficits within language network in each variant of primary progressive aphasia. We examined 39 patients with primary progressive aphasia including logopenic variant (n = 14, age = 61 ± 9 years), non-fluent/agrammatic variant (n = 12, age = 71 ± 8 years) and semantic variant (n = 13, age = 65 ± 7 years) using magnetoencephalographic imaging, compared to a control group that was matched in age and gender to each primary progressive aphasia subgroup (n = 20, age = 65 ± 5 years). Each patient underwent a complete clinical evaluation including a comprehensive battery of language tests. We examined the whole-brain resting state functional connectivity as measured by imaginary coherence in each patient group compared to the control cohort, in three frequency oscillation bands-delta-theta (2-8 Hz); alpha (8-12 Hz); beta (12-30 Hz). Each variant showed a distinct spatiotemporal pattern of altered functional connectivity compared to age-matched controls. Specifically, we found significant hyposynchrony of alpha and beta frequency within the left posterior temporal and occipital cortices in patients with the logopenic variant, within the left inferior frontal cortex in patients with the non-fluent/agrammatic variant, and within the left temporo-parietal junction in patients with the semantic variant. Patients with logopenic variant primary progressive aphasia also showed significant hypersynchrony of delta-theta frequency within bilateral medial frontal and posterior parietal cortices. Furthermore, region of interest-based analyses comparing the spatiotemporal patterns of variant-specific regions of interest identified in comparison to age-matched controls showed significant differences between primary progressive aphasia variants themselves. We also found distinct patterns of regional spectral power changes in each primary progressive aphasia variant, compared to age-matched controls. Our results demonstrate neurophysiological signatures of network-specific neuronal dysfunction in primary progressive aphasia variants. The unique spatiotemporal patterns of neuronal synchrony signify diverse neurophysiological disruptions and pathological underpinnings of the language network in each variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.