Series Elastic Actuators (SEAs) have several benefits for force controlled robotic applications. Typical SEAs place an elastic element between the motor and the load, increasing shock tolerance, allowing for more accurate and stable force control, and creating the potential for energy storage. This paper presents the design of a compact, lightweight, low-friction, electromechanical linear SEA used in the lower body of the Tactical Hazardous Operations Robot (THOR). The THOR SEA is an evolutionary improvement upon the SAFFiR SEA [1]. Design changes focused on reducing the size and fixed length of the actuator while increasing its load capacity. This SEA pairs a ball screw-driven linear actuator with a configurable elastic member. The elastic element is a titanium leaf spring with a removable pivot, setting the compliance to either 650 or 372 [kN/m]. The compliant beam is positioned parallel to the actuator, reducing overall packaging size by relocating the space required for spring deflection. Unlike typical SEAs which measure force through spring deflection, the force applied to the titanium beam is measured through a tension/compression load cell located in line with each actuator, resulting in a measurable load range of +/−2225 [N] at a tolerance of +/−1 [N]. A pair of universal joints connects the actuator to the compliant beam and to the robot frame. As the size of each universal joint is greatly dependent upon its required range of motion, each joint design is tailored to fit a particular angle range to further reduce packaging size. Potential research topics involving the actuator are proposed for future work.
For a humanoid robot to have the versatility of humans, it needs to have similar motion capabilities. This paper presents the design of the hip joint of the Tactical Hazardous Operations Robot (THOR), which was created to perform disaster response duties in human-structured environments. The lower body of THOR was designed to have a similar range of motion to the average human. To accommodate the large range of motion requirements of the hip, it was divided into a parallel-actuated universal joint and a linkage-driven pin joint. The yaw and roll degrees of freedom are driven cooperatively by a pair of parallel series elastic linear actuators to provide high joint torques and low leg inertia. In yaw, the left hip can produce a peak of 115.02 [Nm] of torque with a range of motion of −20° to 45°. In roll, it can produce a peak of 174.72 [Nm] of torque with a range of motion of −30° to 45°. The pitch degree of freedom uses a Hoeken’s linkage mechanism to produce 100 [Nm] of torque with a range of motion of −120° to 30°.
The Electric Series Compliant Humanoid for Emergency Response (ESCHER) platform represents the culmination of four years of development at Virginia Tech to produce a full‐sized force‐controlled humanoid robot capable of operating in unstructured environments. ESCHER's locomotion capability was demonstrated at the DARPA Robotics Challenge (DRC) Finals when it successfully navigated the 61 m loose dirt course. Team VALOR, a Track A team, developed ESCHER leveraging and improving upon bipedal humanoid technologies implemented in previous research efforts, specifically for traversing uneven terrain and sustained untethered operation. This paper presents the hardware platform, software, and control systems developed to field ESCHER at the DRC Finals. ESCHER's unique features include custom linear series elastic actuators in both single and dual actuator configurations and a whole‐body control framework supporting compliant locomotion across variable and shifting terrain. A high‐level software system designed using the robot operating system integrated various open‐source packages and interfaced with the existing whole‐body motion controller. The paper discusses a detailed analysis of challenges encountered during the competition, along with lessons learned that are critical for transitioning research contributions to a fielded robot. Empirical data collected before, during, and after the DRC Finals validate ESCHER's performance in fielded environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.