In metapopulations, the maintenance of local populations can depend on source-sink dynamics, where populations with positive growth rate seed populations with negative growth rate. The pattern and probability of successful dispersal among habitats can therefore be crucial in determining whether local populations will become rare or increase in abundance. We present here data on the dispersal strategy and population dynamics of three marine amphipods living in pen shells (Atrina rigida) in the Gulf of Mexico. The three amphipod species in this study disperse at diVerent life stages. Neomegamphopus hiatus and Melita nitida disperse as adults, while Bemlos unicornis disperses as juveniles. The two species that disperse as adults have the highest initial population sizes when a new shell becomes available, likely caused by the arriving females releasing their brood into these recently occupied shells. This dispersal pattern results in initially higher population growth, but fewer occupied shells, as noted by their clumped distribution. In contrast, the species that disperses as juveniles accumulates more slowly and more evenly across habitats, eventually dominating the other two in terms of numerical abundance. The metapopulation dynamics of the three species seems to be highly dependent on the life history stage involved in dispersal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.