Nutrient-agar plates containing isoxaben (500 mg litre(-1)) were used to isolate isoxaben-metabolising bacteria from four European soils incubated with the herbicide under laboratory conditions. In flask experiments, inoculation of a basal salts medium containing nitrogen and [phenyl-U-14C]isoxaben with an isolate (B2b) resulted in 33% recovery of the initial radioactivity as [14C]carbon dioxide after 2 weeks. A major metabolite identified by GC-MS and NMR analysis as 3-(1-ethyl-1-methylpropyl)isoxazol-5-ylamine accumulated both in basal salts and nutrient broth media. 2,6-Dimethoxybenzoic acid, a suspected metabolite of isoxaben, was not detected in either liquid media. However, the capability of the B2b isolate to use 2,6-dimethoxybenzoic acid as a source of carbon was demonstrated. Soil inoculation with the B2b strain resulted in an increase in the recovery of [14C] carbon dioxide from both [phenyl-U-14C] and [isoxazole-5-14C]isoxaben. The metabolite identified as 3-(1-ethyl-1-methylpropyl)isoxazole-5-ylamine only accumulated if the soil was autoclaved before inoculation. This metabolite was rapidly mineralized by the microflora of a natural soil without history of isoxaben treatment. Homology patterns of sequenced 16S rDNA between isoxaben-transforming isolates and reference strains showed that the four isolates identified belonged to the genus Microbacterium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.