Sol-gel-based optical sensors for both gas-phase and dissolved oxygen have been developed. Both sensors operate on the principle of fluorescence quenching of a ruthenium complex which has been entrapped in a porous sol-gel silica film. A comprehensive investigation was carried out in order to establish optimal film-processing parameters for the two sensing environments. Both tetraethoxysilane and organically modified sol-gel precursors such as methyltriethoxysilane and ethyltriethoxysilane were used. Film hydrophobicity increases as a function of modified precursor content, and this was correlated with enhanced dissolved oxygen (DO) sensor performance. Extending the aliphatic group of the modified precursor further improved DO sensitivity. The influence of water/precursor molar ratio, R, on the sol-gel film microstructure was investigated. R value tailoring of the microstructure and film surface hydrophobicity tailoring were correlated with oxygen diffusion behavior in the films via the Stern-Volmer constants for both gas phase and DO sensing. Excellent performance characteristics were measured for both gas-phase and DO oxygen sensors. The long-term quenching stability of DO sensing films was established over a period of 6 months.
BackgroundNeuroblastoma is one of the most challenging malignancies of childhood, being associated with the highest death rate in paediatric oncology, underlining the need for novel therapeutic approaches. Typically, patients with high risk disease undergo an initial remission in response to treatment, followed by disease recurrence that has become refractory to further treatment. Here, we demonstrate the first silica nanoparticle-based targeted delivery of a tumor suppressive, pro-apoptotic microRNA, miR-34a, to neuroblastoma tumors in a murine orthotopic xenograft model. These tumors express high levels of the cell surface antigen disialoganglioside GD2 (GD2), providing a target for tumor-specific delivery.Principal FindingsNanoparticles encapsulating miR-34a and conjugated to a GD2 antibody facilitated tumor-specific delivery following systemic administration into tumor bearing mice, resulted in significantly decreased tumor growth, increased apoptosis and a reduction in vascularisation. We further demonstrate a novel, multi-step molecular mechanism by which miR-34a leads to increased levels of the tissue inhibitor metallopeptidase 2 precursor (TIMP2) protein, accounting for the highly reduced vascularisation noted in miR-34a-treated tumors.SignificanceThese novel findings highlight the potential of anti-GD2-nanoparticle-mediated targeted delivery of miR-34a for both the treatment of GD2-expressing tumors, and as a basic discovery tool for elucidating biological effects of novel miRNAs on tumor growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.