Acidic tropospheric aerosols contain inorganic species such as sulfurous acid (H(2)SO(3)). As the main alkaline species, ammonia (NH(3)) plays an important role in the heterogeneous neutralization of these acidic aerosols. An aerosol flow-tube apparatus was used to obtain simultaneous optical and size distribution measurements using FTIR and SMPS measurements, respectively, as a function of relative humidity and aerosol chemical composition. A novel chemiluminescence apparatus was also used to measure ammonium ion concentration [NH(4)(+)]. The interactions between ammonia and hydrated sulfur dioxide (SO(2)·H(2)O) were studied at different humidities and concentrations. SO(2)·H(2)O is an important species as it represents the first intermediate in the overall atmospheric oxidation process of sulfur dioxide to sulfuric acid (H(2)SO(4)). This complex was produced within gaseous, aqueous, and aerosol SO(2) systems. The addition of ammonia gave mainly hydrogen sulfite (SHO(3)(-)) tautomers and disulfite ions (S(2)O(5)(2-)). These species were prevalent at high humidities enhancing the aqueous nature of sulfur(IV) species. Their weak acidity is evident due to the low [NH(4)(+)] produced. Size distributions obtained correlated well with the various stages of particulate compositional development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.