Low vitamin D status is common in Europe. The major source of vitamin D in humans is ultraviolet B (UVB)-induced dermal synthesis of cholecalciferol, whereas food sources are believed to play a lesser role. Our objectives were to assess UVB availability (Jm−2) across several European locations ranging from 35° N to 69° N, and compare these UVB data with representative population serum 25-hydroxyvitamin D (25(OH)D) data from Ireland (51–54° N), Iceland (64° N) and Norway (69° N), as exemplars. Vitamin D-effective UVB availability was modelled for nine European countries/regions using a validated UV irradiance model. Standardized serum 25(OH)D data was accessed from the EC-funded ODIN project. The results showed that UVB availability decreased with increasing latitude (from 35° N to 69° N), while all locations exhibited significant seasonal variation in UVB. The UVB data suggested that the duration of vitamin D winters ranged from none (at 35° N) to eight months (at 69° N). The large seasonal fluctuations in serum 25(OH)D in Irish adults was much dampened in Norwegian and Icelandic adults, despite considerably lower UVB availability at these northern latitudes but with much higher vitamin D intakes. In conclusion, increasing the vitamin D intake can ameliorate the impact of low UVB availability on serum 25(OH)D status in Europe.
Vitamin D deficiency is a public health issue in some, but certainly not all, LMICs. There is a clear need for targeting public health strategies for prevention of vitamin D deficiency in those LMICs with excess burden.
The aim of this review was to determine the impact of the fatty acid desaturase (FADS) genotype on plasma and tissue concentrations of the long-chain (LC) n-3 PUFA, including EPA and DHA, which are associated with the risk of several diet-related chronic diseases, including CVD. In addition to dietary intakes, which are low for many individuals, tissue EPA and DHA are also influenced by the rate of bioconversion from α-linolenic acid (αLNA). Δ-5 and Δ-6 desaturase enzymes, encoded for by FADS1 and FADS2 genes, are key desaturation enzymes involved in the bioconversion of essential fatty acids (αLNA and linoleic acid (LA)) to longer chained PUFA. In general, carriers of FADS minor alleles tend to have higher habitual plasma and tissue levels of LA and αLNA, and lower levels of arachidonic acid, EPA and also to a lesser extent DHA. In conclusion, available research findings suggest that FADS minor alleles are also associated with reduced inflammation and CVD risk, and that dietary total fat and fatty acid intake have the potential to modify relationships between FADS gene variants and circulating fatty acid levels. However to date, neither the size-effects of FADS variants on fatty acid status, nor the functional SNP in FADS1 and 2 have been identified. Such information could contribute to the refinement and targeting of EPA and DHA recommendations, whereby additional LC n-3 PUFA intakes could be recommended for those carrying FADS minor alleles.
Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.