Proton transfer and transport in water, gramicidin and some selected channels and bioenergetic proteins are reviewed. An attempt is made to draw some conclusions about how Nature designs long distance, proton transport functionality. The prevalence of water rather than amino acid hydrogen bonded chains is noted, and the possible benefits of waters as the major component are discussed qualitatively.
We have measured the kinetics of electron transfer (ET) from the primary quinone (Q(A)) to the special pair (P) of the reaction center (RC) complex from Rhodobacter sphaeroides as a function of temperature (5-300 K), illumination protocol (cooled in the dark and under illumination from 110, 160, 180, and 280 K), and warming rate (1.3 and 13 mK/s). The nonexponential kinetics are interpreted with a quantum-mechanical ET model (Fermi's golden rule and the spin-boson model), in which heterogeneity of the protein ensemble, relaxations, and fluctuations are cast into a single coordinate that relaxes monotonically and is sensitive to all types of relaxations caused by ET. Our analysis shows that the structural changes that occur in response to ET decrease the free energy gap between donor and acceptor states by 120 meV and decrease the electronic coupling between donor and acceptor states from 2.7 x 10(-4) cm(-1) to 1.8 x 10(-4) cm(-1). At cryogenic temperatures, conformational changes can be slowed or completely arrested, allowing us to monitor relaxations on the annealing time scale (approximately 10(3)-10(4) s) as well as the time scale of ET (approximately 100 ms). The relaxations occur within four broad tiers of conformational substates with average apparent Arrhenius activation enthalpies of 17, 50, 78, and 110 kJ/mol and preexponential factors of 10(13), 10(15), 10(21), and 10(25) s(-1), respectively. The parameterization provides a prediction of the time course of relaxations at all temperatures. At 300 K, relaxations are expected to occur from 1 ps to 1 ms, whereas at lower temperatures, even broader distributions of relaxation times are expected. The weak dependence of the ET rate on both temperature and protein conformation, together with the possibility of modeling heterogeneity and dynamics with a single conformational coordinate, make RC a useful model system for probing the dynamics of conformational changes in proteins.
Proton and electron transfer events in reaction centers (RCs) from Rhodobacter sphaeroides were investigated by site-directed mutagenesis of glutamic acid at position 212 and aspartic acid at 213 in the secondary quinone (QB) binding domain of the L subunit. These residues were mutated singly to the corresponding amides (mutants L212EQ and L213DN) and together to give the double mutant (L212EQ/L213DN). In the double mutant RCs, the rate of electron transfer from the primary (QA) to the secondary (QB) acceptor quinones is fast (tau approximately 300 microseconds) and is pH independent from pH 5 to 11. The rate of recombination between the oxidized primary donor, P+, and QB- is also pH independent and much slower (tau approximately 10 s) than in the wild type (Wt), indicating a significant stabilization of the QB- semiquinone. In the double mutant, and in L213DN mutant RCs at low pH, the P+QB- decay is suggested to occur significantly via a direct recombination rather than by repopulating the P+QA- state, as in the Wt. Comparison of the behavior of Wt and the three mutant RC types leads to the following conclusions: the pK of AspL213 in the Wt is approximately 4 for the QAQB state (pKQB) and approximately 5 for the QAQB-state (pKQB-); for GluL212, pKQB approximately 9.5 and pKQB- approximately 11. In L213DN mutant RCs, pKQB of GluL212 is less than or equal to 7, indicating that the high pK values of GluL212 in the Wt are due largely to electrostatic interaction with the ionized AspL213 which contributes a shift of at least 2.5 pH units. Transfer of the second electron and all associated proton uptake to form QBH2 is drastically inhibited in double mutant and L213DN mutant RCs. At pH greater than or equal to 8, the rates are at least 10(4)-fold slower than in Wt RCs. In L212EQ mutant RCs the second electron transfer and proton uptake are biphasic. The fast phase of the electron transfer is similar to that of the Wt, but the extent of rapid transfer is pH dependent, revealing the pH dependence of the equilibrium QA(-)QB- in equilibrium with QAQBH-. The estimated limits on the pK values--pKQA-QB-less than or equal to 7.3, pKQAQB2- greater than or equal to 10.4--are similar to those derived earlier for Wt RCs [Kleinfeld et al. (1985) Biochim. Biophys. Acta 809, 291-310] and may pertain to the quinone head group, per se.(ABSTRACT TRUNCATED AT 400 WORDS)
For twenty years the photosynthetic reaction center (RC) has been the premier testing ground for theoretical understanding of electron transfer in aperiodic systems, with special, but not unique, reference to long distance biological electron transport. In addition to the known structure, many of the attributes that make RCs so well suited to studying electron transfer function equally well for any charge movement, including protons. These include the presence of intrinsic reporter groups (electrochromically active pigments), high time resolution through light activation, and a large number and variety of distinct reactions, ranging from loosely coupled responses of the protein dielectric to specific, long distance proton transfers in and out of active sites, and bond making in terminal chemical transformations. A wide variety of biophysical methods have been coupled with site directed mutagenesis to reveal mechanisms of proton uptake, transfer and chemistry in the RC. This review summarizes our progress to date, which suggests that the RC can serve as a paradigm, not only for many energy coupled, membrane proteins, but for the electrostatic and dielectric properties of proteins that are critical to their general function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.