The evaluation of measurements on characteristics of trace evidence found at a crime scene and on a suspect is an important part of forensic science. Five methods of assessment for the value of the evidence for multivariate data are described. Two are based on significance tests and three on the evaluation of likelihood ratios. The likelihood ratio which compares the probability of the measurements on the evidence assuming a common source for the crime scene and suspect evidence with the probability of the measurements on the evidence assuming different sources for the crime scene and suspect evidence is a well-documented measure of the value of the evidence. One of the likelihood ratio approaches transforms the data to a univariate projection based on the first principal component. The other two versions of the likelihood ratio for multivariate data account for correlation among the variables and for two levels of variation: that between sources and that within sources. One version assumes that between-source variability is modelled by a multivariate normal distribution; the other version models the variability with a multivariate kernel density estimate. Results are compared from the analysis of measurements on the elemental composition of glass. Copyright 2004 Royal Statistical Society.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika. SUMMARY An extension of the kernel method of density estimation from continuous to multivariate binary spaces is described. Its simple nonparametric nature together with its consistency properties make it an attractive tool in discrimination problems, with some advantages over already proposed parametric counterparts. The method is illustrated by an application to a particular medical diagnostic problem. Simple extensions of the method to categorical data and to data of mixed binary and continuous form are indicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.