Dofetilide 5 nmol/L decreased APD(90) dispersion between NZ and AZ and reduced the early ES-induced arrhythmias. However, dofetilide 50 nmol/L increased APD(90) dispersion, and at 10 and 50 nmol/L, it increased the late spontaneous arrhythmias.
A series of (six-membered heteroaryl)-substituted 2(1H)-quinolinones (1) was synthesized, and structure-activity relationships for cardiac stimulant activity were determined. Most compounds were prepared by acidic hydrolysis of a heteroaryl-2-methoxyquinoline obtained by palladium-catalyzed cross-coupling methodology. Direct reaction of a pyridinylzinc reagent with a 6-haloquinolinone also proved successful. In anesthetized dogs, 6-pyridin-3-yl-2(1H)-quinolinone (3; 50 micrograms/kg) displayed greater inotropic activity (percentage increase in dP/dt max) than positional isomers (2, 4-6), and potency was maintained with either mono- (13, 15) or di- (16) alkylpyridinyl substituents. Introduction of a 4- (24) or 7- (25) methyl group into 3 reduced inotropic activity, whereas the 8-isomer (26) proved to be the most potent member of the series. Compound 26 and the 2,6-dimethylpyridinyl analogue (27) were approximately 6 and 3 times more potent than milrinone. Several quinolinones displayed positive inotropic activity (decrease in QA interval) in conscious dogs after oral administration (1 mg/kg), and 26, 27 were again the most potent members of the series. Compound 27 (0.25, 0.5, 1.0 mg/kg po) demonstrated dose-related cardiac stimulant activity, which was maintained for at least 4 h. No changes in heart rate were observed. Compounds 3, 4, 26, and 27 also selectively stimulated the force of contraction, rather than heart rate, in the dog heart-lung preparation. For a 50% increase in dP/dt max with 27, heart rate changed by less than 10 beats/min. In norepinephrine contracted rabbit femoral artery and saphenous vein, 27 produced dose related (5 X 10(-7) to 5 X 10(-4) M) vasorelaxant activity. The combined cardiac stimulant and vasodilator properties displayed by 27, coupled with a lack of effect on heart rate, should be beneficial for the treatment of congestive heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.