We describe a lattice Boltzmann algorithm to simulate liquid crystal hydrodynamics. The equations of motion are written in terms of a tensor order parameter. This allows both the isotropic and the nematic phases to be considered. Backflow effects and the hydrodynamics of topological defects are naturally included in the simulations, as are viscoelastic properties such as shear-thinning and shear-banding. 83.70.Jr; 47.11.+j; 64.70.Md
We show that backflow, the coupling between the order parameter and the velocity fields, has a significant effect on the motion of defects in nematic liquid crystals. In particular, the defect speed can depend strongly on the topological strength in two dimensions and on the sense of rotation of the director about the core in three dimensions.
We describe a lattice Boltzmann algorithm to simulate liquid-crystal hydrodynamics in three dimensions. The equations of motion are written in terms of a tensor order parameter. This allows both the isotropic and the nematic phases to be considered. Backflow effects and the hydrodynamics of topological defects are naturally included in the simulations, as are viscoelastic effects such as shear-thinning and shear-banding. We describe the implementation of velocity boundary conditions and show that the algorithm can be used to describe optical bounce in twisted nematic devices and secondary flow in sheared nematics with an imposed twist.
We study the kinetics of the nematic-isotropic transition in a two-dimensional liquid crystal by using a lattice Boltzmann scheme that couples the tensor order parameter and the flow consistently. Unlike in previous studies, we find that the time dependences of the correlation function, energy density, and number of topological defects obey dynamic scaling laws with growth exponents that, within the numerical uncertainties, agree with the value 1/2 expected from simple dimensional analysis. We find that these values are not altered by the hydrodynamic flow. In addition, by examining shallow quenches, we find that the presence of orientational disorder can inhibit amplitude ordering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.