Background Increased understanding of whether individuals who have recovered from COVID-19 are protected from future SARS-CoV-2 infection is an urgent requirement. We aimed to investigate whether antibodies against SARS-CoV-2 were associated with a decreased risk of symptomatic and asymptomatic reinfection. Methods A large, multicentre, prospective cohort study was done, with participants recruited from publicly funded hospitals in all regions of England. All health-care workers, support staff, and administrative staff working at hospitals who could remain engaged in follow-up for 12 months were eligible to join The SARS-CoV-2 Immunity and Reinfection Evaluation study. Participants were excluded if they had no PCR tests after enrolment, enrolled after Dec 31, 2020, or had insufficient PCR and antibody data for cohort assignment. Participants attended regular SARS-CoV-2 PCR and antibody testing (every 2–4 weeks) and completed questionnaires every 2 weeks on symptoms and exposures. At enrolment, participants were assigned to either the positive cohort (antibody positive, or previous positive PCR or antibody test) or negative cohort (antibody negative, no previous positive PCR or antibody test). The primary outcome was a reinfection in the positive cohort or a primary infection in the negative cohort, determined by PCR tests. Potential reinfections were clinically reviewed and classified according to case definitions (confirmed, probable, or possible) and symptom-status, depending on the hierarchy of evidence. Primary infections in the negative cohort were defined as a first positive PCR test and seroconversions were excluded when not associated with a positive PCR test. A proportional hazards frailty model using a Poisson distribution was used to estimate incidence rate ratios (IRR) to compare infection rates in the two cohorts. Findings From June 18, 2020, to Dec 31, 2020, 30 625 participants were enrolled into the study. 51 participants withdrew from the study, 4913 were excluded, and 25 661 participants (with linked data on antibody and PCR testing) were included in the analysis. Data were extracted from all sources on Feb 5, 2021, and include data up to and including Jan 11, 2021. 155 infections were detected in the baseline positive cohort of 8278 participants, collectively contributing 2 047 113 person-days of follow-up. This compares with 1704 new PCR positive infections in the negative cohort of 17 383 participants, contributing 2 971 436 person-days of follow-up. The incidence density was 7·6 reinfections per 100 000 person-days in the positive cohort, compared with 57·3 primary infections per 100 000 person-days in the negative cohort, between June, 2020, and January, 2021. The adjusted IRR was 0·159 for all reinfections (95% CI 0·13–0·19) compared with PCR-confirmed primary infections. The median interval between primary infection and reinfection was more than 200 days. Interpretation A previous histo...
Background BNT162b2 mRNA and ChAdOx1 nCOV-19 adenoviral vector vaccines have been rapidly rolled out in the UK from December, 2020. We aimed to determine the factors associated with vaccine coverage for both vaccines and documented the vaccine effectiveness of the BNT162b2 mRNA vaccine in a cohort of health-care workers undergoing regular asymptomatic testing. MethodsThe SIREN study is a prospective cohort study among staff (aged ≥18 years) working in publicly-funded hospitals in the UK. Participants were assigned into either the positive cohort (antibody positive or history of infection [indicated by previous positivity of antibody or PCR tests]) or the negative cohort (antibody negative with no previous positive test) at the beginning of the follow-up period. Baseline risk factors were collected at enrolment, symptom status was collected every 2 weeks, and vaccination status was collected through linkage to the National Immunisations Management System and questionnaires. Participants had fortnightly asymptomatic SARS-CoV-2 PCR testing and monthly antibody testing, and all tests (including symptomatic testing) outside SIREN were captured. Data cutoff for this analysis was Feb 5, 2021. The follow-up period was Dec 7, 2020, to Feb 5, 2021. The primary outcomes were vaccinated participants (binary ever vacinated variable; indicated by at least one vaccine dose recorded by at least one of the two vaccination data sources) for the vaccine coverage analysis and SARS-CoV-2 infection confirmed by a PCR test for the vaccine effectiveness analysis. We did a mixed-effect logistic regression analysis to identify factors associated with vaccine coverage. We used a piecewise exponential hazard mixed-effects model (shared frailty-type model) using a Poisson distribution to calculate hazard ratios to compare time-to-infection in unvaccinated and vaccinated participants and estimate the impact of the BNT162b2 vaccine on all PCR-positive infections (asymptomatic and symptomatic). This study is registered with ISRCTN, number ISRCTN11041050, and is ongoing.Findings 23 324 participants from 104 sites (all in England) met the inclusion criteria for this analysis and were enrolled. Included participants had a median age of 46•1 years (IQR 36•0-54•1) and 19 692 (84%) were female; 8203 (35%) were assigned to the positive cohort at the start of the analysis period, and 15 121 (65%) assigned to the negative cohort. Total follow-up time was 2 calendar months and 1 106 905 person-days (396 318 vaccinated and 710 587 unvaccinated). Vaccine coverage was 89% on Feb 5, 2021, 94% of whom had BNT162b2 vaccine. Significantly lower coverage was associated with previous infection, gender, age, ethnicity, job role, and Index of Multiple Deprivation score. During follow-up, there were 977 new infections in the unvaccinated cohort, an incidence density of 14 infections per 10 000 person-days; the vaccinated cohort had 71 new infections 21 days or more after their first dose (incidence density of eight infections per 10 000 person-days) and nine infecti...
Background: Chagas Disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi, with some of the most serious manifestations affecting the cardiovascular system. It is a chronic, stigmatizing condition, closely associated with poverty and affecting close to 6 million people globally. Although historically the disease was limited to endemic areas of Latin America recent years have seen an increasing global spread. In addition to the morbidity and mortality associated with the disease, the social and economic burdens on individuals and society are substantial. Often called the 'silent killer', Chagas disease is characterized by a long, asymptomatic phase in affected indivi duals. A pproximately 30% then go on develop chronic Chagas cardiomyopathy and other serious cardiac complications such as stroke, rhythm disturbances and severe heart failure. Methods: In a collaboration of the World Hearth Federation (WHF) and the Inter-American S ociety of Cardiology (IASC) a writing group consisting of 20 diverse experts on Chagas disease (CD) was convened. The group provided up to date expert knowledge based on their area of expertise. An extensive review of the literature describing obstacles to diagnosis and treatment Echeverría et al: WHF IASC Roadmap on Chagas Disease Art. 26, page 2 of 31 of CD along with proposed solutions was conducted. A survey was sent to all WHF Members and, using snowball sampling to widen the consultation, to a variety of health care professionals working in the CD global health community. The results were analyzed, open comments were reviewed and consolidated, and the findings were incorporated into this document, thus ensuring a consensus representation. Results: The WHF IASC Roadmap on Chagas Disease offers a comprehensive summary of current knowledge on prevention, diagnosis and management of the disease. In providing an analysis of 'roadblocks' in access to comprehensive care for Chagas disease patients, the document serves as a framework from which strategies for implementation such as national plans can be formulated. Several dimensions are considered in the analysis: healthcare system capabilities, governance, financing, community awareness and advocacy. Conclusion: The WHF IASC Roadmap proposes strategies and evidence-based solutions for healthcare professionals, health authorities and governments to help overcome the barriers to comprehensive care for Chagas disease patients. This roadmap describes an ideal patient care pathway, and explores the roadblocks along the way, offering potential solutions based on available research and examples in practice. It represents a call to action to decision-makers and health care professionals to step up efforts to eradicate Chagas disease.
As the global COVID-19 pandemic advances, it increasingly impacts those vulnerable populations who already bear a heavy burden of neglected tropical disease. Chagas disease (CD), a neglected parasitic infection, is of particular concern because of its potential to cause cardiac, gastrointestinal, and other complications which could increase susceptibility to COVID-19. The over one million people worldwide with chronic Chagas cardiomyopathy require special consideration because of COVID-19’s potential impact on the heart, yet the pandemic also affects treatment provision to people with acute or chronic indeterminate CD. In this document, a follow-up to the WHF-IASC Roadmap on CD, we assess the implications of coinfection with SARS-CoV-2 and Trypanosoma cruzi , the etiological agent of CD. Based on the limited evidence available, we provide preliminary guidance for testing, treatment, and management of patients affected by both diseases, while highlighting emerging healthcare access challenges and future research needs.
BackgroundChagas disease (CD) affects over 300,000 people in the United States, but fewer than 1% have been diagnosed and less than 0.3% have received etiological treatment. This is a significant public health concern because untreated CD can produce fatal complications. What factors prevent people with CD from accessing diagnosis and treatment in a nation with one of the world’s most advanced healthcare systems?Methodology/Principal findingsThis analysis of barriers to diagnosis and treatment of CD in the US reflects the opinions of the authors more than a comprehensive discussion of all the available evidence. To enrich our description of barriers, we have conducted an exploratory literature review and cited the experience of the main US clinic providing treatment for CD. We list 34 barriers, which we group into four overlapping dimensions: systemic, comprising gaps in the public health system; structural, originating from political and economic inequalities; clinical, including toxicity of medications and diagnostic challenges; and psychosocial, encompassing fears and stigma.ConclusionsWe propose this multidimensional framework both to explain the persistently low numbers of people with CD who are tested and treated and as a potential basis for organizing a public health response, but we encourage others to improve on our approach or develop alternative frameworks. We further argue that expanding access to diagnosis and treatment of CD in the US means asserting the rights of vulnerable populations to obtain timely, quality healthcare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.