Biological timekeeping enables the coordination and execution of complex cellular processes such as developmental programs, day/night organismal changes, intercellular signaling, and proliferative safeguards. While these systems are often considered separately owing to a wide variety of mechanisms, time frames, and outputs, all clocks are built by calibrating or delaying the rate of biochemical reactions and processes. In this review, we explore the common themes and core design principles of cellular clocks, giving special consideration to the challenges associated with building timers from biochemical components. We also outline how evolution has coopted time to increase the reliability of a diverse range of biological systems.
53BP1 acts at the crossroads between DNA repair and p53-mediated stress response. With its interactor USP28, it is part of the mitotic surveillance pathway (MSP), a sensor that monitors the duration of cell division, promoting p53-dependent cell cycle arrest when a critical time threshold is surpassed. 53BP1 dynamically associates with kinetochores, being recruited during prophase, and then undergoing a time-dependent loss of affinity. However, the relevance of this behaviour remains unclear. Here, we identify CENP-F as an interaction partner and kinetochore receptor for 53BP1. By engineering human cells with a CENP-F point mutation, we demonstrate that preventing 53BP1 kinetochore localization does not reduce MSP proficiency. Strikingly, however, preventing the loss of 53BP1 from the kinetochore by inhibiting Polo-like kinase 1 (PLK1) restrains MSP activity, a phenomenon that is abrogated in the CENP-F mutant condition. Taken together, we demonstrate that kinetochore-loaded 53BP1 represents an MSP functionally inhibited state and that PLK1-dependent re-localization of 53BP1 represents an important layer of MSP regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.