Mean daily temperature in natural nests of freshwater turtles with temperature dependent sex determination is a poor predictor of hatchling sex ratios when nest temperatures fluctuate. To account for this, a mathematical model has been developed on the assumption that hatchling sex depends on the daily proportion of embryonic development that occurs above the threshold temperature for sex determination rather than the proportion of time spent above the threshold. The model predictions are borne out by experiments using the marine turtle Caretta caretta. Average developmental rates, both overall and during the period that sexual differentiation is sensitive to temperature, are unaffected by diel fluctuations about the mean incubation temperature. Sex ratios, on the other hand, were affected by diel fluctuations and ranged from ca. 100% males under regimes 26 2 0°C and 26 2 3°C to 100% females for regimes 26 7°C and 26 c 8°C. These and intermediate sex ratios were in close agreement with model predictions. Demonstration of a n impact of temperature on sex, while holding overall developmental rate constant, gives support to hypotheses invoking a direct role for temperature rather than alternative hypotheses invoking overall developmental rate as a more proximal influence on sex. The model explains why mean temperature is a poor predictor of hatchling sex ratios. It urges caution in using "hours above the threshold for predicting sex ratios, because 1 h r at 1°C above the threshold will not be equivalent to 1 hr at 4°C above the threshold. It provides a general framework for integrating experiments a t constant temperatures with those in the field or laboratory using fluctuating regimes. I t provides greater scope for exploring how reptiles with temperature dependent sex determination might respond to climatic change or other disturbances to the incubation environment. And it provides a n explanation of why secondary factors such a hydric conditions and oxygen potentials might influence hatchling sex, even if temperature acts directly t o influence sex ratios rather than through its influence on overall developmental rate.
Aim To critically review the status of the green sea turtle ( Chelonia mydas ) using the best available scientific studies as there is a prevailing view that this species is globally endangered and its marine ecosystem functions compromised.Location Ogasawara (Japan), Hawaii (USA), Great Barrier Reef (Australia), Florida (USA), Tortuguero (Costa Rica). MethodsWe compiled seasonal nesting activity data from all reliable continuous long-term studies (> 25 years), which comprised data series for six of the world's major green turtle rookeries. We estimated the underlying time-specific trend in these six rookery-specific nester or nest abundance series using a generalized smoothing spline regression approach.Results Estimated rates of nesting population increase ranged from c. 4-14% per annum over the past two to three decades. These rates varied considerably among the rookeries, reflecting the level of historical exploitation. Similar increases in nesting population were also evident for many other green turtle stocks that have been monitored for shorter durations than the long-term studies presented here. Main conclusionsWe show that six of the major green turtle nesting populations in the world have been increasing over the past two to three decades following protection from human hazards such as exploitation of eggs and turtles. This population recovery or rebound capacity is encouraging and suggests that the green turtle is not on the brink of global extinction even though some stocks have been seriously depleted and are still below historical abundance levels. This demonstrates that relatively simple conservation strategies can have a profound effect on the recovery of once-depleted green turtle stocks and presumably the restoration of their ecological function as major marine consumers.
Ecological and genetic studies of marine turtles generally support the hypothesis of natal homing, but leave open the question of the geographical scale of genetic exchange and the capacity of turtles to shift breeding sites. Here we combine analyses of mitochondrial DNA (mtDNA) variation and recapture data to assess the geographical scale of individual breeding populations and the distribution of such populations through Australasia. We conducted multiscale assessments of mtDNA variation among 714 samples from 27 green turtle rookeries and of adult female dispersal among nesting sites in eastern Australia. Many of these rookeries are on shelves that were flooded by rising sea levels less than 10 000 years (c. 450 generations) ago. Analyses of sequence variation among the mtDNA control region revealed 25 haplotypes, and their frequency distributions indicated 17 genetically distinct breeding stocks (Management Units) consisting either of individual rookeries or groups of rookeries in general that are separated by more than 500 km. The population structure inferred from mtDNA was consistent with the scale of movements observed in long-term mark-recapture studies of east Australian rookeries. Phylogenetic analysis of the haplotypes revealed five clades with significant partitioning of sequence diversity (Phi = 68.4) between Pacific Ocean and Southeast Asian/Indian Ocean rookeries. Isolation by distance was indicated for rookeries separated by up to 2000 km but explained only 12% of the genetic structure. The emerging general picture is one of dynamic population structure influenced by the capacity of females to relocate among proximal breeding sites, although this may be conditional on large population sizes as existed historically across this region.
To address aspects of the evolution and natural history of green turtles, we assayed mitochondrial (mt) DNA genotypes from 226 specimens representing 15 major rookeries around the world. Phylogenetic analyses of these data revealed (1) a comparatively low level of mtDNA variability and a slow mtDNA evolutionary rate (relative to estimates for many other vertebrates); (2) a fundamental phylogenetic split distinguishing all green turtles in the Atlantic-Mediterranean from those in the Indian-Pacific Oceans; (3) no evidence for matrilineal distinctiveness of a commonly recognized taxonomic form in the East Pacific (the black turtle C.m. agassizi or C. agassizi); (4) in opposition to published hypotheses, a recent origin for the Ascension Island rookery, and its close genetic relationship to a geographically proximate rookery in Brazil; and (5) a geographic population substructure within each ocean basin (typically involving fixed or nearly fixed genotypic differences between nesting populations) that suggests a strong propensity for natal homing by females. Overall, the global matriarchal phylogeny of Chelonia mydas appears to have been shaped by both geography (ocean basin separations) and behavior (natal homing on regional or rookery-specific scales). The shallow evolutionary population structure within ocean basins likely results from demographic turnover (extinction and colonization) of rookeries over time frames that are short by evolutionary standards but long by ecological standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.