Stratigraphic accretion of dormant propagules in soil can result in natural archives useful for studying ecological and evolutionary responses to environmental change. Few attempts have been made, however, to use soil‐stored seed banks as natural archives, in part because of concerns over nonrandom attrition and mixed stratification. Here, we examine the persistent seed bank of Schoenoplectus americanus, a foundational brackish marsh sedge, to determine whether it can serve as a resource for reconstructing historical records of demographic and population genetic variation. After assembling profiles of the seed bank from radionuclide‐dated soil cores, we germinated seeds to “resurrect” cohorts spanning the 20th century. Using microsatellite markers, we assessed genetic diversity and differentiation among depth cohorts, drawing comparisons to extant plants at the study site and in nearby and more distant marshes. We found that seed density peaked at intermediate soil depths. We also detected genotypic differences among cohorts as well as between cohorts and extant plants. Genetic diversity did not decline with depth, indicating that the observed pattern of differentiation is not due to attrition. Patterns of differentiation within and among extant marshes also suggest that local populations persist as aggregates of small clones, likely reflecting repeated seedling recruitment and low immigration from admixed regional gene pools. These findings indicate that persistent and stratified soil‐stored seed banks merit further consideration as resources for reconstructing decadal‐ to century‐long records that can lend insight into the tempo and nature of ecological and evolutionary processes that shape populations over time.
Recent studies suggest that coastal ecosystems can bury significantly more C than tropical forests, indicating that continued coastal development and exposure to sea level rise and storms will have global biogeochemical consequences. The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) site provides an excellent subtropical system for examining carbon (C) balance because of its exposure to historical changes in freshwater distribution and sea level rise and its history of significant long-term carbon-cycling studies. FCE LTER scientists used net ecosystem C balance and net ecosystem exchange data to estimate C budgets for riverine mangrove, freshwater marsh, and seagrass meadows, providing insights into the magnitude of C accumulation and lateral aquatic C transport. Rates of net C production in the riverine mangrove forest exceeded those reported for many tropical systems, including terrestrial forests, but there are considerable uncertainties around those estimates due to the high potential for gain and loss of C through aquatic fluxes. C production was approximately balanced between gain and loss in Everglades marshes; however, the contribution of periphyton increases uncertainty in these estimates. Moreover, while the approaches used for these initial estimates were informative, a resolved approach for addressing areas of uncertainty is critically needed for coastal wetland ecosystems. Once resolved, these C balance estimates, in conjunction with an understanding of drivers and key ecosystem feedbacks, can inform cross-system studies of ecosystem response to long-term changes in climate, hydrologic management, and other land use along coastlines
Belowground biomass is a critical factor regulating ecosystem functions of coastal marshes, including soil organic matter (SOM) accumulation and the ability of these systems to keep pace with sea-level rise. Nevertheless, belowground biomass responses to environmental and vegetation changes have been given little emphasis marsh studies. Here we present a method using stable carbon isotopes and color to identify root and rhizomes of Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller (C 3 ) and Spartina patens (Ait.) Muhl. (C 4 ) occurring in C 3 ) and C 4 -dominated communities in a Chesapeake Bay brackish marsh. The functional significance of the biomass classes we identified is underscored by differences in their chemistry, depth profiles, and variation in biomass and profiles relative to abiotic and biotic factors. C 3 rhizomes had the lowest concentrations of cellulose (29.19%) and lignin (14.43%) and the lowest C:N (46.97) and lignin:N (0.16) ratios. We distinguished two types of C 3 roots, and of these, the dark red C 3 roots had anomalously high C:N (195.35) and lignin:N (1.14) ratios, compared with other root and rhizome classes examined here and with previously published values. The C 4 -dominated community had significantly greater belowground biomass (4119.1 g m )2 ) than the C 3 -dominated community (3256.9 g m )2 ), due to greater total root biomass and a 3.6-fold higher C 3 -root:rhizome ratio in the C 4 -dominated community. C 3 rhizomes were distributed significantly shallower in the C 4 -dominated community, while C 3 roots were significantly deeper. Variability in C 3 rhizome depth distributions was explained primarily by C 4 biomass, and C 3 roots were explained primarily by water table height. Our results suggest that belowground biomass in this system is sensitive to slight variations in water table height (across an 8 cm range), and that the reduced overlap between C 3 and C 4 root profiles in the C 4 -dominated community may account for the greater total root biomass observed in that community. Given that future elevated atmospheric CO 2 and accelerated sea-level rise are likely to increase C 3 abundance in Atlantic and Gulf coast marshes, investigations that quantify how patterns of C 3 and C 4 belowground biomass respond to environmental and biological factors stand to improve our understanding of ecosystem-wide impacts of global changes on coastal wetlands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.