Fluid flow through a two-dimensional fracture network has been simulated using a discrete fracture model. The computed field-scale permeabilities were then compared to those obtained using an equivalent continuum approach in which the permeability of each grid block is first obtained by performing fine-scale simulations of flow through the fracture network within that region. In the equivalent continuum simulations, different grid-sizes were used, corresponding to N by N grids with N = 10, 40, 100 and 400. The field-scale permeabilities found from the equivalent continuum simulations were generally within 10% of the values found from the discrete fracture simulations. The discrepancies between the two approaches seemed to be randomly related to the grid size, as no convergence was observed as N increased. An interesting finding was that the equivalent continuum approach gave accurate results in cases where the grid block size was clearly smaller than the 'representative elementary volume'.
The effect of stress on flow and transport in fractured rock masses using an extended multiple interacting continua method with crack tensor theory Permalink https://escholarship.org/uc/item/9cm5f01g Nuclear Technology, 187(2)
Journal
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.