In many documents, such as semi-structured webpages, textual semantics are augmented with additional information conveyed using visual elements including layout, font size, and color. Prior work on information extraction from semi-structured websites has required learning an extraction model specific to a given template via either manually labeled or distantly supervised data from that template. In this work, we propose a solution for "zero-shot" open-domain relation extraction from webpages with a previously unseen template, including from websites with little overlap with existing sources of knowledge for distant supervision and websites in entirely new subject verticals. Our model uses a graph neural network-based approach to build a rich representation of text fields on a webpage and the relationships between them, enabling generalization to new templates. Experiments show this approach provides a 31% F1 gain over a baseline for zero-shot extraction in a new subject vertical.
In this paper, we consider advancing webscale knowledge extraction and alignment by integrating OpenIE extractions in the form of (subject, predicate, object) triples with Knowledge Bases (KB). Traditional techniques from universal schema and from schema mapping fall in two extremes: either they perform instance-level inference relying on embedding for (subject, object) pairs, thus cannot handle pairs absent in any existing triples; or they perform predicate-level mapping and completely ignore background evidence from individual entities, thus cannot achieve satisfying quality. We propose OpenKI to handle sparsity of Ope-nIE extractions by performing instance-level inference: for each entity, we encode the rich information in its neighborhood in both KB and OpenIE extractions, and leverage this information in relation inference by exploring different methods of aggregation and attention. In order to handle unseen entities, our model is designed without creating entity-specific parameters. Extensive experiments show that this method not only significantly improves state-of-the-art for conventional OpenIE extractions like ReVerb, but also boosts the performance on OpenIE from semi-structured data, where new entity pairs are abundant and data are fairly sparse.
Supervised event extraction systems are limited in their accuracy due to the lack of available training data. We present a method for self-training event extraction systems by bootstrapping additional training data. This is done by taking advantage of the occurrence of multiple mentions of the same event instances across newswire articles from multiple sources. If our system can make a highconfidence extraction of some mentions in such a cluster, it can then acquire diverse training examples by adding the other mentions as well. Our experiments show significant performance improvements on multiple event extractors over ACE 2005 and TAC-KBP 2015 datasets.
Information extraction from semi-structured webpages provides valuable long-tailed facts for augmenting knowledge graph. Relational Web tables are a critical component containing additional entities and attributes of rich and diverse knowledge. However, extracting knowledge from relational tables is challenging because of sparse contextual information. Existing work linearize table cells and heavily rely on modifying deep language models such as BERT which only captures related cells information in the same table. In this work, we propose a novel relational table representation learning approach considering both the intra-and inter-table contextual information. On one hand, the proposed Table Convolutional Network model employs the attention mechanism to adaptively focus on the most informative intra-table cells of the same row or column; and, on the other hand, it aggregates inter-table contextual information from various types of implicit connections between cells across different tables. Specifically, we propose three novel aggregation modules for (i) cells of the same value, (ii) cells of the same schema position, and (iii) cells linked to the same page topic. We further devise a supervised multi-task training objective for jointly predicting column type and pairwise column relation, as well as a table cell recovery objective for pre-training. Experiments on real Web table datasets demonstrate our method can outperform competitive baselines by +4.8% of F1 for column type prediction and by +4.1% of F1 for pairwise column relation prediction. CCS CONCEPTS• Information systems → Data mining.
Open Information Extraction (OpenIE), the problem of harvesting triples from natural language text whose predicate relations are not aligned to any pre-defined ontology, has been a popular subject of research for the last decade. However, this research has largely ignored the vast quantity of facts available in semistructured webpages. In this paper, we define the problem of OpenIE from semi-structured websites to extract such facts, and present an approach for solving it. We also introduce a labeled evaluation dataset to motivate research in this area. Given a semi-structured website and a set of seed facts for some relations existing on its pages, we employ a semi-supervised label propagation technique to automatically create training data for the relations present on the site. We then use this training data to learn a classifier for relation extraction. Experimental results of this method on our new benchmark dataset obtained a precision of over 70%. A larger scale extraction experiment on 31 websites in the movie vertical resulted in the extraction of over 2 million triples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.