Allergic or hypersensitivity reactions to orthopaedic implants can pose diagnostic and therapeutic challenges. Although 10% to 15% of the population exhibits cutaneous sensitivity to metals, deep-tissue reactions to metal implants are comparatively rare. Nevertheless, the link between cutaneous sensitivity and clinically relevant deep-tissue reactions is unclear. Most reactions to orthopaedic devices are type IV, or delayed-type hypersensitivity reactions. The most commonly implicated allergens are nickel, cobalt, and chromium; however, reactions to nonmetal compounds, such as polymethyl methacrylate, antibiotic spacers, and suture materials, have also been reported. Symptoms of hypersensitivity to implants are nonspecific and include pain, swelling, stiffness, and localized skin reactions. Following arthroplasty, internal fixation, or implantation of similarly allergenic devices, the persistence or early reappearance of inflammatory symptoms should raise suspicions for hypersensitivity. However, hypersensitivity is a diagnosis of exclusion. Infection, as well as aseptic loosening, particulate synovitis, instability, and other causes of failure must first be eliminated.
OBJECTInsufficient biomechanical data exist from comparisons of the stability of expandable lateral cages with that of static transforaminal lumbar interbody fusion (TLIF) cages. The purpose of this biomechanical study was to compare the relative rigidity of L4–5 expandable lateral interbody constructs with or without additive pedicle screw fixation with that of L4–5 static TLIF cages in a novel cadaveric spondylolisthesis model.METHODSEight human cadaver spines were used in this study. A spondylolisthesis model was created at the L4–5 level by creating 2 injuries. First, in each cadaver, a nucleotomy from 2 channels through the anterior side was created. Second, the cartilage of the facet joint was burred down to create a gap of 4 mm. Light-emitting-diode tracking markers were placed at L-3, L-4, L-5, and S-1. Specimens were tested in the following scenarios: intact model, bilateral pedicle screws, expandable lateral 18-mm-wide cage (alone, with unilateral pedicle screws [UPSs], and with bilateral pedicle screws [BPSs]), expandable lateral 22-mm-wide cage (alone, with UPSs, and with BPSs), and TLIF (alone, with UPSs, and with BPSs). Four of the spines were tested with the expandable lateral cages (18-mm cage followed by the 22-mm cage), and 4 of the spines were tested with the TLIF construct. All these constructs were tested in flexion-extension, axial rotation, and lateral bending.RESULTSThe TLIF-alone construct was significantly less stable than the 18- and 22-mm-wide lateral lumbar interbody fusion (LLIF) constructs and the TLIF constructs with either UPSs or BPSs. The LLIF constructs alone were significantly less stable than the TLIF construct with BPSs. However, there was no significant difference between the 18-mm LLIF construct with UPSs and the TLIF construct with BPSs in any of the loading modes.CONCLUSIONSExpandable lateral cages with UPSs provide stability equivalent to that of a TLIF construct with BPSs in a degenerative spondylolisthesis model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.