Arithmetic Fuchsian and Kleinian groups can all be obtained from quaternion algebras (see [2,12]). In a series of papers ([8,9,10,11]), Takeuchi investigated and characterized arithmetic Fuchsian groups among all Fuchsian groups of finite covolume, in terms of the traces of the elements in the group. His methods are readily adaptable to Kleinian groups, and we obtain a similar characterization of arithmetic Kleinian groups in §3. Commensurability classes of Kleinian groups of finite co-volume are discussed in [2] and it is shown there that the arithmetic groups can be characterized as those having dense commensurability subgroup. Here the wide commensurability classes of arithmetic Kleinian groups are shown to be approximately in one-to-one correspondence with the isomorphism classes of the corresponding quaternion algebras (Theorem 2) and it easily follows that there are infinitely many wide commensurability classes of cocompact Kleinian groups, and hence of compact hyperbolic 3-manifolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.