We provide the first evidence that lateral hypothalamic orexin system function extends beyond general reward seeking to play a critical role in expression of a multiphenotype addiction-like state. Thus, the orexin system is a potential novel target for pharmacotherapies designed to treat cocaine addiction. In addition, these data point to the IntA model as a preferred approach to modeling addiction-like behavior in rats.
The nucleus accumbens (NAc) has been implicated in mediating different forms of decision making in humans and animals. In the present study, we observed that inactivation of the rat NAc, via infusion of GABA agonists, reduced preference for a large/risky option and increased response latencies on a probabilistic discounting task. Discrete inactivations of the NAc shell and core revealed further differences between these regions in mediating choice and response latencies, respectively. The effect on choice was attributable to reduced win-stay performance (i.e., choosing risky after a being rewarded for a risky choice on a preceding trial). Moreover, NAc inactivation altered choice only when the large/risky option had greater long-term value, in terms of the amount of food that could be obtained over multiple trials relative to the small/certain option. Inactivation of the NAc or the shell subregion also slightly reduced preference for larger rewards on a reward magnitude discrimination. Thus, the NAc seems to play a small role in biasing choice toward larger rewards, but its contribution to behavior is amplified when delivery of these rewards is uncertain, helping to direct response selection toward more favorable outcomes.
The nucleus accumbens (NAc) serves as an integral node within cortico-limbic circuitry that regulates various forms of cost-benefit decision making. The dopamine (DA) system has also been implicated in enabling organisms to overcome a variety of costs to obtain more valuable rewards. However, it remains unclear how DA activity within the NAc may regulate decision making involving reward uncertainty. This study investigated the contribution of different DA receptor subtypes in the NAc to risk-based decision making, assessed with a probabilistic discounting task. In well-trained rats, D1 receptor blockade with SCH 23,390 decreased preference for larger, uncertain rewards, which was associated with enhanced negative-feedback sensitivity (ie, an increased tendency to select a smaller/certain option after an unrewarded risky choice). Treatment with a D1 agonist (SKF 81,297) optimized decision making, increasing choice of the risky option when reward probability was high, and decreasing preference under low probability conditions. In stark contrast, neither blockade of NAc D2 receptors with eticlopride, nor stimulation of these receptors with quinpirole or bromocriptine influenced risky choice. In comparison, infusion of the D3-preferring agonist PD 128,907 decreased reward sensitivity and risky choice. Collectively, these results show that mesoaccumbens DA refines risk-reward decision biases via dissociable mechanisms recruiting D1 and D3, but not D2 receptors. D1 receptor activity mitigates the effect of reward omissions on subsequent choices to promote selection of reward options that may have greater long-term utility, whereas excessive D3 receptor activity blunts the impact that larger/uncertain rewards have in promoting riskier choices.
Phasic increases and decreases in dopamine (DA) transmission encode reward prediction errors thought to facilitate reward-related learning, yet how these signals guide action selection in more complex situations requiring evaluation of different reward remains unclear. We manipulated phasic DA signals while rats performed a risk/reward decision-making task, using temporally discrete stimulation of either the lateral habenula (LHb) or rostromedial tegmental nucleus (RMTg) to suppress DA bursts (confirmed with neurophysiological studies) or the ventral tegmental area (VTA) to override phasic dips. When rats chose between small/certain and larger/risky rewards, LHb or RMTg stimulation, time-locked to delivery of one of these rewards, redirected bias toward the alternative option, whereas VTA stimulation after non rewarded choices increased risky choice. LHb stimulation prior to choices shifted bias away from more preferred options. Thus, phasic DA signals provide feedback on whether recent actions were rewarded to update decision policies and direct actions toward more desirable reward.
Choosing between smaller, assured rewards or larger, uncertain ones requires reconciliation of competing biases towards more certain or riskier options. We used disconnection and neuroanatomical techniques to reveal that separate, yet interconnected, neural pathways linking the medial prefrontal cortex (PFC), the basolateral amygdala (BLA) and nucleus accumbens (NAc) contribute to these different decision biases in rats. Disrupting communication between the BLA and NAc revealed that this subcortical circuit biases choice towards larger, uncertain rewards on a probabilistic discounting task. In contrast, disconnections between the BLA and PFC increased choice of the Large/Risky option. PFC-NAc disconnections did not affect choice but did increase choice latencies and trial omissions. Neuroanatomical studies confirmed that projection pathways carrying axons from BLA-to-PFC transverse a distinctly different route relative to PFC-to-BLA pathways (via the ventrolateral amydalofugal pathway and ventromedial internal capsule, respectively). We exploited these dissociable axonal pathways to selectively disrupt bottom-up and top-down communication between the BLA and PFC. Subsequent disconnection studies revealed that disruption of top-down (but not bottom-up) information transfer between the medial PFC and BLA increased choice of the larger, riskier option, suggesting that this circuit facilitates tracking of actions and outcomes to temper urges for riskier rewards as they become less profitable. These findings provide novel insight into the dynamic competition between these cortical/subcortical circuits that shape our decision biases and underlie conflicting urges when evaluating options that vary in terms of potential risks and rewards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.