We compared the Y-chromosome linkage maps for four salmonid species (Arctic charr, Salvelinus alpinus; Atlantic salmon, Salmo salar; brown trout, Salmo trutta; and rainbow trout, Oncorhynchus mykiss) and a putative Y-linked marker from lake trout (Salvelinus namaycush). These species represent the three major genera within the subfamily Salmoninae of the Salmonidae. The data clearly demonstrate that different Y-chromosomes have evolved in each of the species. Arrangements of markers proximal to the sex-determining locus are preserved on homologous, but different, autosomal linkage groups across the four species studied in detail. This indicates that a small region of DNA has been involved in the rearrangement of the sex-determining region. Placement of the sex-determining region appears telomeric in brown trout, Atlantic salmon, and Arctic charr, whereas an intercalary location for SEX may exist in rainbow trout. Three hypotheses are proposed to account for the relocation: translocation of a small chromosome arm; transposition of the sex-determining gene; or differential activation of a primary sex-determining gene region among the species
Background: Salmonids are of interest because of their relatively recent genome duplication, and their extensive use in wild fisheries and aquaculture. A comprehensive gene list and a comparison of genes in some of the different species provide valuable genomic information for one of the most widely studied groups of fish.
We constructed a genetic linkage map for Arctic char (Salvelinus alpinus) using two backcrosses between genetically divergent strains. Forty-six linkage groups (expected = 39-41) and 19 homeologous affinities (expected = 25) were identified using 184 microsatellites, 129 amplified fragment length polymorphisms (AFLPs), 13 type I gene markers, and one phenotypic marker, SEX. Twenty-six markers remain unlinked. Female map distance (9.92 Morgans) was substantially higher than male map distance (3.90 Morgans) based on the most complete parental information (i.e., the F1 hybrids). Female recombination rates were often significantly higher than those of males across all pairwise comparisons within homologous chromosomal segments (average female to male ratios within families was 1.69:1). The female hybrid parent had significantly higher recombination rates than the pure strain female parent. Segregation distortion was detected in four linkage groups (4, 8, 13, 20) for both families. In family 3, only the largest fish were sampled for genotyping, suggesting that segregation distortion may represent regions possessing influences on growth. In family 2, almost all cases showing segregation distortion involved markers in the female hybrid parent.
Arctic charr is an especially attractive aquaculture species given that it features the desirable tissue traits of other salmonids and is bred and grown at inland freshwater tank farms year round. It is of interest to develop upper temperature tolerant (UTT) strains of Arctic charr to increase the robustness of the species in the face of climate change and to enable production in more southern regions. We used a genomics approach that takes advantage of the well-studied Atlantic salmon genome to identify genes that are associated with UTT in Arctic charr. Specifically, we conducted an acute temperature trial to identify temperature tolerant and intolerant Arctic charr individuals, which were subject to microarray and qPCR analysis to identify candidate UTT genes. These were compared with genes annotated in a quantitative trait locus (QTL) region that was previously identified as associated with UTT in rainbow trout and Arctic charr and that we sequenced in Atlantic salmon. Our results suggest that small heat shock proteins as well as HSP-90 genes are associated with UTT. Furthermore, hemoglobin expression was significantly downregulated in tolerant compared with intolerant fish. Finally, QTL analysis and expression profiling identified COUP-TFII as a candidate UTT gene, although its specific role is unclear given the identification of two transcripts, which appear to have different expression patterns. Our results highlight the importance of using more than one approach to identify candidate genes, particularly when examining a complicated trait such as UTT in a highly complex genome for which there is no reference genome.
Tropomyosin (TM) has been isolated from the cardiac muscle, and fast and slow trunk (myotomal) muscles of the mature salmonid fish Atlantic salmon (SuZmo suZur) and rainbow trout (Sulmo guirdneri). When examined electrophoretically, isoforms of TM were detected which were specific, and exclusive, to each type of muscle. Cardiac and fast muscles contained single and distinct isoforms, while slow muscle contained two distinct isoforms, closely related in terms of apparent M, and PI. There was no detectable difference between the same TM type from either salmon or trout. On a variety of gel systems, the cardiac and slow isoforms migrated in close proximity to each other and to rabbit a-TM. The fast isoform comigrated with rabbit /3-TM. In developing salmon fry, a more acidic (unphosphorylated) variant of TM was present in addition to, and of similar M , to, the fast adult isoform. This TM declined in steady-state level during maturation and was virtually undetected in adult muscle. All of the isolated TMs contained little or no covalently bound phosphate and were blocked at the N-terminus. The amino acids released by carboxypeptidase A, when ordered to give maximal similarity to other muscle TMs, were consistent with the following sequences: fast (LDNALNDMTSI) and cardiac (LDHALNDMTSL). The C-terminal region of the slow TM contained His but was heterogeneous. In viscosity measurements, performed as a function of increasing protein concentration, at low ionic strength (t = 5"C, pH 7.00), fast TM exhibited the highest relative viscosity values. Lower and equivalent levels of polymerisation occurred with the cardiac and slow TMs. Polymerisation of all three isoforms was temperature-dependent, with cardiac TM being least sensitive and fast TM being most sensitive. Determination of the complete coding sequence of adult fast TM confirmed the findings of the carboxypeptidase analysis, but the remainder of the sequence more closely resembled a-type TMs than /3-type TMs. Overall, salmon fast TM contains 20 (mostly conservative) substitutions compared to rabbit striated muscle a-TM and 40 (mostly conservative) substitutions compared to rabbit striated muscle /3-TM. This demonstrates that electrophoretic mobility is not, in all instances, a suitable method to assess the isomorphic nature of striated muscle TMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.