Numerous animal and human studies have demonstrated the benefit of controlled interfragmentary motion on fracture healing. In this study, we quantified interfragmentary motion and load transfer in tibial fractures fixed using a novel intramedullary nail (IMN) that allows controlled axial motion. Fifty composite tibias with various fracture patterns were utilized. For all test conditions, two interlocking screws were used to fix the nail in the proximal metaphysis, and two interlocking screws through the distal metaphysis. The nail allowed either no motion (static mode) or 1 mm (dynamic mode) of cyclic axial motion between the two fracture fragments for every fracture pattern tested. As expected, strain shielding was more prominent under static nail conditions. In contrast, specimens tested under dynamic nail conditions transferred axial load between the fracture fragments such that strains near the fracture site were generally similar to those measured on an intact tibia. Maximum shear strains proximal to the fracture were significantly lower in specimens with oblique or butterfly fracture patterns (p < 0.01) compared to intact specimens. This decrease in shear strain indicates that strain shielding effects were likely present due to the implant. However, strain shielding appeared to be reduced in tensile and compressive principal strains. In summary, the novel IMN allowed controlled axial motion between the fragments in a variety of common diaphyseal tibial fracture patterns. Clinical Significance: The present in vitro biomechanical study investigated a novel intramedullary nail capable of controlled axial interfragmentary motion which may potentially enhance fracture healing.
Background: Metal debris and corrosion products generated from the taper junctions of modular joint replacements have been recognized as contributors to failure. Therefore, understanding the factors associated with increased taper wear and corrosion is fundamental to improving implant performance.Methods: A cohort of 85 large-diameter metal-on-metal heads and cups retrieved at revision surgery, after 10 to 96 months of service, was evaluated. First, metrology was conducted to quantify head taper material loss and implant articular surface wear. Then, joint frictional moments for each retrieved head-and-cup pair were measured during 10 cycles of simulated physiological gait in a biomechanical model. Taper material loss was evaluated for correlations with frictional moments, articular wear, head diameter, head-cup clearance, and time in vivo.Results: Peak resultant frictional moments ranged from 9.1 to 26.3 Nm, averaging 17.3 ± 2.7 Nm. Fretting and corrosion damage during in vivo service resulted in material loss from the head tapers ranging between 0.04 and 25.57 mm 3 , compared with combined head and cup articular wear of 0.80 to 351.75 mm 3 in this cohort. Taper material loss was not correlated with higher frictional moments (R = 20.20 to 0.11, p = 0.07 to 0.81). Higher frictional moments from axial rotation were correlated with higher head and cup wear (R = 0.33, p < 0.01). The correlation between taper material loss and head diameter was weak and did not reach statistical significance (R = 0.20, p = 0.07). Taper material loss was not correlated with nominal head-cup clearance (R = 0.06, p = 0.6). Finally, taper material loss increased significantly over time (R = 0.34, p < 0.01).Conclusions: Despite serious concerns regarding trunnionosis, volumes of head taper wear were generally lower than those of articular surface wear. There was no statistical correlation between taper wear and frictional moments. Therefore, the results suggest that high friction in metal-on-metal implants does not contribute to higher material loss at the head taper, despite high bending moments.Clinical Relevance: The amount of metal debris and corrosion products from taper junctions of the joint arthroplasties, widely recognized as an insidious cause of failure, was not correlated with joint frictional moments. Multiple factors affect taper wear: implant design, material, size, surface finish, and patient weight and activity level. However, in the present cohort, high friction of metal-on-metal total hip replacements likely did not contribute to increased volume of material loss at taper interfaces, despite increased moments at the locations of taper material loss. Debris and corrosion products from Morse taper junctions of modular joint replacements are recognized as insidious contributors to failure. Beyond surgical observations, 3 major categories of studies have explored Morse tapers: preclinical evaluations of new implants 1-3 , finite-element models 4-7 , and implant retrieval analyses [8][9][10] . Understanding the factors assoc...
AimsTaper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage.MethodsAfter examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems.ResultsThere was substantial agreement in grading among all three observers with uncleaned (n = 465) and with the subset of cleaned (n = 85) implants. The expanded scoring criteria provided a wider distribution of scores which ultimately correlated well with corrosion material loss. Cleaning changed the average scores marginally using the Goldberg criteria (p = 0.290); however, using the VGS, approximately 40% of the scores for all observers changed, increasing the average score from 4.24 to 4.35 (p = 0.002). There was a strong correlation between measured material loss and new grading scores.ConclusionThe expanded scoring criteria provided a wider distribution of scores which ultimately correlated well with corrosion material loss. This system provides potential advantages for assessing taper damage without requiring specialized imaging devices.Cite this article: Bone Joint Res 2023;12(3):155–164.
The International Standard Organization, ISO 22622, specifies two options for joint wear simulator evaluation of total ankle replacements (TARs): load-controlled and displacement-controlled. In the present study, the load-controlled testing parameters were applied to cadaveric specimens to quantify and compare the observed sagittal translations and axial rotations to those specified under the displacementcontrolled option. Twelve cadaveric specimens were stripped of extraneous tissues, keeping surrounding ankle ligaments. A halo was used to produce plantarflexion and dorsiflexion of the talus through two screws, while a baseplate resisted axial loads. The axial force and torque were applied to the tibia and fibula under force and torque feedback control. An anterior-posterior force was applied to the tibia. Plantarflexion-dorsiflexion were applied using rotation control. To protect the cadaveric specimens, loads were applied at 50% of the specified load profile while plantarflexion-dorsiflexion rotation was applied as specified. There was variation among specimens in magnitudes of anterior-posterior displacement with peaks ranging from 3.3 mm posteriorly to 3.0 mm anteriorly. Likewise, there was variation among specimens in magnitude of axial rotation, with peaks ranging from 11°e xternal rotation to 4.5°internal rotation. However, the mean magnitudes of AP displacement and axial rotation did not exceed those specified by ISO 22622.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.