CO 2 reduction is a promising strategy to synthesize valuable multi-carbon products (C 2+ ) while sequestering CO 2 and utilizing intermittent renewable electricity. Here, we present a stable membrane electrode assembly (MEA) electrolyzer that converts CO 2 to C 2+ products. This strategy achieves $50% and $80% selectivity for ethylene and C 2+ products, respectively, with cathode outlet concentrations of $30% ethylene and the direct production of $4 wt % ethanol. We characterize stability by operating continuously for 100 h with steady ethylene production.
The carbon dioxide reduction reaction (CO 2 RR) presents the opportunity to consume CO 2 and produce desirable products. However, the alkaline conditions required for productive CO 2 RR result in the bulk of input CO 2 being lost to bicarbonate and carbonate. This loss imposes a 25% limit on the conversion of CO 2 to multicarbon (C 2+ ) products for systems that use anions as the charge carrierand overcoming this limit is a challenge of singular importance to the field. Here, we find that cation exchange membranes (CEMs) do not provide the required locally alkaline conditions, and bipolar membranes (BPMs) are unstable, delaminating at the membrane−membrane interface. We develop a permeable CO 2 regeneration layer (PCRL) that provides an alkaline environment at the CO 2 RR catalyst surface and enables local CO 2 regeneration. With the PCRL strategy, CO 2 crossover is limited to 15% of the amount of CO 2 converted into products, in all cases. Low crossover and low flow rate combine to enable a single pass CO 2 conversion of 85% (at 100 mA/cm 2 ), with a C 2+ faradaic efficiency and full cell voltage comparable to the anion-conducting membrane electrode assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.