The illegal adulteration of milk with melamine in 2008 in China led to adverse kidney and urinary tract effects in hundreds of thousands of children and the reported deaths of six. The milk had been deliberately adulterated to elevate the apparent protein content, and subsequently melamine was detected in many milk-related products which had been exported. This led to the banning of imports of milk and milk products from China intended for the nutritional use of children and to the implementation of analytical methods to test products containing milk products. An optical biosensor inhibition immunoassay has been developed as a rapid and robust method for the analysis of infant formula and infant liquid milk samples. A compound with a chemical structure similar to that of melamine was employed as a hapten to raise a polyclonal antibody and as the immobilized antigen on the surface of a biosensor chip. The sensitivity of the assay, given as an IC(50), was calculated to be 67.9 ng mL(-1) in buffer. The antibody did not cross-react with any of the byproducts of melamine manufacture; however, significant cross-reactivity was observed with the insecticide cyromazine of which melamine is a metabolite. When sample matrix was applied to the assay, a limit of detection of <0.5 μg mL(-1) was determined in both infant formula and infant liquid milk. The development of the immunoassay and validation data for the detection of melamine is presented together with the results obtained following the analysis of melamine-contaminated milk powder.
Ractopamine (RCT) is a phenethanolamine member of the family of beta-adrenergic agonists (beta-agonists). This class of compounds have become notable for their properties of enhancing the growth rates of farm animal species but are not licensed for use in Europe. An ELISA procedure employing a polyclonal antibody raised in a goat was developed to detect RCT residues in bovine urine samples. The assay had a high sensitivity (calibration curve mid-point of 22 pg per well), allowing the analysis of urine samples without the need for sample clean-up. In addition, an LC-MS-MS confirmatory procedure was developed which was able to act as a confirmatory procedure for the ELSA results. Four calves were orally treated with RCT (0.1 mg kg-1 body mass for 17 d) and urine samples collected were assayed by both analytical procedures. It was observed that RCT residues were excreted mainly in the form of glucuronides and deconjugation could be achieved using two different sources of the enzyme beta-glucuronidase (Helix pomatia and Escherichia coli). High concentrations of RCT residues were found throughout the medication period (44-473 ng ml-1; LC-MS-MS data) and remained present for several days following removal of the drug from the diet. RCT residues were no longer detectable 2 weeks after withdrawal. Good agreement (r2 = 0.73) was achieved between the ELISA and LC-MS-MS results, especially when sample deconjugation was applied to the urine samples for sets of analyses. The results show that an effective screening and confirmatory system was devised to detect RCT residues in urine samples taken during treatment and close to withdrawal. However, alternative matrices may have to be selected to allow the illegal use of the substance to be detected following prolonged withdrawal times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.