Caloric restriction (CR) protects against aging and disease but the mechanisms by which this affects mammalian lifespan are unclear. We show in mice that deletion of the nutrient-responsive mTOR (mammalian target of rapamycin) signaling pathway component ribosomal S6 protein kinase 1 (S6K1) led to increased lifespan and resistance to age-related pathologies such as bone, immune and motor dysfunction and loss of insulin sensitivity. Deletion of S6K1 induced gene expression patterns similar to those seen in CR or with pharmacological activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), a conserved regulator of the metabolic response to CR. Our results demonstrate that S6K1 influences healthy mammalian lifespan, and suggest therapeutic manipulation of S6K1 and AMPK might mimic CR and provide broad protection against diseases of aging. Genetic studies in S. cerevisiae, C. elegans and D. melanogaster implicate several mechanisms in the regulation of lifespan. These include the insulin and insulin-like growth factor 1 (IGF-1) signaling (IIS) and mammalian target of rapamycin (mTOR) pathways which both activate the downstream effector ribosomal protein S6 kinase 1 (S6K1) (1, 2). Although the role of these pathways in mammalian aging is less clear, there is mounting evidence that IIS regulates lifespan in mice (1). Global deletion of one allele of the IGF1 receptor (Igf1r), adipose-specific deletion of the insulin receptor (Insr), global deletion of insulin receptor substrate protein 1 (Irs1) or neuron-specific deletion of Irs2 all increase mouse lifespan (1). Lifespan-extending mutations in the somatotropic axis also appear to work through attenuated IIS (3). Igf1r has also been implicated as a modulator of human longevity (4). However, the action of downstream effectors of IIS or mTOR signaling in mammalian longevity is not fully understood.S6K1 transduces anabolic signals that indicate nutritional status to regulate cell size and growth and metabolism through various mechanisms (5). These include effects on the translational machinery and on cellular energy levels through the activity of adenosine monophosphate (AMP)-activated protein kinase (AMPK) (6, 7). Furthermore, S6K1 serine phosphorylates IRS1 and IRS2 thereby decreasing insulin signaling (5). Given the key role of S6K1 in IIS and mTOR signaling, and the regulation of aging in lower organisms by mTOR, S6K, and their downstream effectors (2) we used log rank testing to evaluate differences in lifespan of wild-type (WT) and S6K1 -/-littermate mice on a C57BL/6 background (8). Data for both sexes combined showed median lifespan in S6K1 -/-mice increased by 80 days (from 862 to 942 days) or 9% relative to that of WT mice (X 2 = 10.52, p < 0.001) ( Fig. 1A and Table 1). Maximum lifespan (mean lifespan of the oldest 10% within a cohort) was also increased (1077±16 and 1175±24 days, p < 0.01 for WT and S6K1 -/-mice, respectively). Analysis of each sex separately showed that median lifespan in female S6K1 -/-mice was increased, by 153 d...
Recent evidence suggests that alterations in insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) can increase mammalian life span. For example, in several mouse mutants, impairment of the growth hormone (GH)/IGF1 axis increases life span and also insulin sensitivity. However, the intracellular signaling route to altered mammalian aging remains unclear. We therefore measured the life span of mice lacking either insulin receptor substrate (IRS) 1 or 2, the major intracellular effectors of the IIS receptors. Our provisional results indicate that female Irs1-/- mice are long-lived. Furthermore, they displayed resistance to a range of age-sensitive markers of aging including skin, bone, immune, and motor dysfunction. These improvements in health were seen despite mild, lifelong insulin resistance. Thus, enhanced insulin sensitivity is not a prerequisite for IIS mutant longevity. Irs1-/- female mice also displayed normal anterior pituitary function, distinguishing them from long-lived somatotrophic axis mutants. In contrast, Irs2-/- mice were short-lived, whereas Irs1+/- and Irs2+/- mice of both sexes showed normal life spans. Our results therefore suggest that IRS1 signaling is an evolutionarily conserved pathway regulating mammalian life span and may be a point of intervention for therapies with the potential to delay age-related processes.
Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMCα2KO and AgRPα2KO mice lacking AMPKα2 in proopiomelanocortin-(POMC-) and agouti-related protein-expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMCα2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. In contrast, AgRPα2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPKα2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMCα2KO and AgRPα2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus.
SummaryTwo theories of how energy metabolism should be associated with longevity, both mediated via free-radical production, make completely contrary predictions. . We sought associations between longevity and individual variations in energy metabolism in a cohort of outbred mice. We found a positive association between metabolic intensity (kJ daily food assimilation expressed as g/body mass) and lifespan, but no relationships of lifespan to body mass, fat mass or lean body mass. Mice in the upper quartile of metabolic intensities had greater resting oxygen consumption by 17% and lived 36% longer than mice in the lowest intensity quartile. Mitochondria isolated from the skeletal muscle of mice in the upper quartile had higher proton conductance than mitochondria from mice from the lowest quartile. The higher conductance was caused by higher levels of endogenous activators of proton leak through the adenine nucleotide translocase and uncoupling protein-3. Individuals with high metabolism were therefore more uncoupled, had greater resting and total daily energy expenditures and survived longestsupporting the 'uncoupling to survive' hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.