The alarming decline of amphibians around the world calls for complementary studies to better understand their responses to climate change. In mountain environments, water resources linked to snowmelt play a major role in allowing amphibians to complete tadpole metamorphosis. As snow cover duration has significantly decreased since the 1970s, amphibian populations could be strongly impacted by climate warming, and even more in high elevation sites where air temperatures are increasing at a higher rate than at low elevation. In this context, we investigated common frog (Rana temporaria) breeding phenology at two different elevations and explored the threats that this species faces in a climate change context. Our objectives were to understand how environmental variables influence the timing of breeding phenology of the common frog, and explore the threats that amphibians face in the context of climate change in mountain areas. To address these questions, we collected 11 years (2009–2019) of data on egg-spawning date, tadpole development stages, snowmelt date, air temperature, rainfall and drying up of wetland pools at ∼1,300 and ∼1,900 m a.s.l. in the French Alps. We found an advancement of the egg-spawning date and snowmelt date at low elevation but a delay at high elevations for both variables. Our results demonstrated a strong positive relationship between egg-spawning date and snowmelt date at both elevations. We also observed that the risk of frost exposure increased faster at high elevation as egg-spawning date advanced than at low elevation, and that drying up of wetland pools led to tadpole mortality at the high elevation site. Within the context of climate change, egg-spawning date is expected to happen earlier in the future and eggs and tadpoles of common frogs may face higher risk of frost exposure, while wetland drying may lead to higher larval mortality. However, population dynamics studies are needed to test these hypotheses and to assess impacts at the population level. Our results highlight climate-related threats to common frog populations in mountain environments, but additional research should be conducted to forecast how climate change may benefit or harm amphibian populations, and inform conservation and land management plans in the future.
Temperatures in mountain areas are increasing at a higher rate than the Northern Hemisphere land average, but how fauna may respond, in particular in terms of phenology, remains poorly understood. The aim of this study was to assess how elevation could modify the relationships between climate variability (air temperature and snow melt‐out date), the timing of plant phenology and egg‐laying date of the coal tit (Periparus ater). We collected 9 years (2011–2019) of data on egg‐laying date, spring air temperature, snow melt‐out date, and larch budburst date at two elevations (~1,300 m and ~1,900 m asl) on a slope located in the Mont‐Blanc Massif in the French Alps. We found that at low elevation, larch budburst date had a direct influence on egg‐laying date, while at high‐altitude snow melt‐out date was the limiting factor. At both elevations, air temperature had a similar effect on egg‐laying date, but was a poorer predictor than larch budburst or snowmelt date. Our results shed light on proximate drivers of breeding phenology responses to interannual climate variability in mountain areas and suggest that factors directly influencing species phenology vary at different elevations. Predicting the future responses of species in a climate change context will require testing the transferability of models and accounting for nonstationary relationships between environmental predictors and the timing of phenological events.
Climate change in the European Alps during recent years has led to decreased snow cover duration as well as increases in the frequency and intensity of summer heat waves. The risk of drought for alpine wetlands and temporary pools, which rely on water from snowmelt and provide habitat for specialist plant and amphibian biodiversity, is largely unknown and understudied in this context. Here, we test and validate a novel application of Sentinel-2 imagery aimed at quantifying seasonal variation in water surface area in the context of 95 small (median surface area <100 m2) and shallow (median depth of 20 cm) alpine wetlands in the French Alps, using a linear spectral unmixing approach. For three study years (2016–2018), we used path-analysis to correlate mid-summer water surface area to annual metrics of snowpack (depth and duration) and spring and summer climate (temperature and precipitation). We further sought to evaluate potential biotic responses to drought for study years by monitoring the survival of common frog (Rana temporaria) tadpoles and wetland plant biomass production quantified using peak Normalized Difference Vegetation Index (NDVI). We found strong agreement between citizen science-based observations of water surface area and Sentinel-2 based estimates (R2 = 0.8–0.9). Mid-summer watershed snow cover duration and summer temperatures emerged as the most important factors regulating alpine wetland hydrology, while the effects of summer precipitation, and local and watershed snow melt-out timing were not significant. We found that a lack of summer snowfields in 2017 combined with a summer heat wave resulted in a significant decrease in mid-summer water surface area, and led to the drying up of certain wetlands as well as the observed mortality of tadpoles. We did not observe a negative effect of the 2017 summer on the biomass production of wetland vegetation, suggesting that wetlands that maintain soil moisture may act as favorable microhabitats for above treeline vegetation during dry years. Our work introduces a remote sensing-based protocol for monitoring the surface hydrology of alpine wetland habitats at the regional scale. Given that climate models predict continued reduction of snow cover in the Alps during the coming years, as well as particularly intense warming during the summer months, our conclusions underscore the vulnerability of alpine wetlands in the face of ongoing climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.