Dynamic detection in challenging lighting environments is essential for advancing intelligent robots and autonomous vehicles. Traditional vision systems are prone to severe lighting conditions in which rapid increases or decreases in contrast or saturation obscures objects, resulting in a loss of visibility. By incorporating intelligent optimization of polarization into vision systems using the iNC (integrated nanoscopic correction), we introduce an intelligent real-time fusion algorithm to address challenging and changing lighting conditions. Through real-time iterative feedback, we rapidly select polarizations, which is difficult to achieve with traditional methods. Fusion images were also dynamically reconstructed using pixel-based weights calculated in the intelligent polarization selection process. We showed that fused images by intelligent polarization selection reduced the mean-square error by two orders of magnitude to uncover subtle features of occluded objects. Our intelligent real-time fusion algorithm also achieved two orders of magnitude increase in time performance without compromising image quality. We expect intelligent fusion imaging photonics to play increasingly vital roles in the fields of next generation intelligent robots and autonomous vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.