In the context of dietary transition, blending animal-source protein with plant-source protein offers a promising way to exploit their nutritional complementarity. This study investigates the feasibility of formulating an iron-rich hybrid food product blending plant-source and animal-source protein ingredients for iron-deficient populations. Using a commercial 3D-food printer, two different-shaped products composed mainly of pork and chicken liver and red lentils were designed. After baking at 180 °C with 70% steam, the 3D-printed products were packed under two different modified atmospheres (MAP): O2-MAP (70% oxygen + 30% carbon dioxide) and N2-MAP (70% nitrogen + 30% carbon dioxide) and stored at 4 °C. pH, water content, aw, lipid oxidation, heme iron and non-heme iron contents and textural properties were measured after 0, 7, 14 and 21 days in storage. After 21 days in storage, the 3D-printed hybrid products had an iron content of around 13 mg/100 g, regardless of the product form and packaging method. However, O2-MAP products showed significant (p < 0.05) time–course changes from day 0 to day 7, i.e., an increase in lipid oxidation, a decrease in heme iron content and an increase in product hardness, gumminess and chewiness. This work opens prospects for developing hybrid food products that upvalue animal by-products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.