ThiFSGH and ThiI are required for the biosynthesis of the thiazole moiety of thiamin in Escherichia coli. The overproduction, purification, and characterization of ThiFS and the identification of two of the early steps in the biosynthesis of the thiazole moiety of thiamin are described here. ThiS isolated from E. coli thiI ؉ is posttranslationally modified by converting the carboxylic acid group of the carboxyl-terminal glycine into a thiocarboxylate. The thiI gene plays an essential role in the formation of the thiocarboxylate because ThiS isolated from a thiI ؊ strain does not contain this modification. ThiF catalyzes the adenylation by ATP of the carboxylterminal glycine of ThiS. This reaction is likely to be involved in the activation of ThiS for sulfur transfer from cysteine or from a cysteine-derived sulfur donor.
Thiaminase I (E.C. 2.5. 1.2) from Bacillus thiaminolyticus catalyzes the degradation of thiamin (vitamin B1). Unexpected mass heterogeneity (MW 42,127, 42,197, and 42,254; 1:2:1) in recombinant thiaminase I from Escherichia coli was detected by electrospray ionization Fourier-transform mass spectrometry, resolving power 7×10(4). Nozzle-skimmer fragmentation data reveal an extra Ala (+71.02; 71.04=theory) and GlyAla (+128.04; 128.06=theory) on the N-terminus, in addition to the fully processed enzyme. However, the fragment ion masses were consistent only with this sequence through 330 N-terminal residues; resequencing of the last 150 bps of the thiaminase I gene yields a sequence consistent with the molecular weight values and all 61 fragment ion masses. Covalently labeling the active site with a 108-Da pyrimidine moiety via mechanism-based inhibition produces a corresponding molecular weight increase in all three thiaminase I components, which indicates that they are all enzymatically active. Inspection of the fragment ions that do and do not increase by 108 Da indicates that the active site nucleophile is located between Pro(79) and Thr(177) in the 379 amino acid enzyme.
Thiaminase-I catalyzes the replacement of the thiazole moiety of thiamin with a wide variety of nucleophiles, such as pyridine, aniline, catechols, quinoline, and cysteine. The crystal structure of the enzyme from Bacillus thiaminolyticus was determined at 2.5 A resolution by multiple isomorphous replacement and refined to an R factor of 0.195 (Rfree = 0.272). Two other structures, one native and one containing a covalently bound inhibitor, were determined at 2.0 A resolution by molecular replacement from a second crystal form and were refined to R factors of 0.205 and 0.217 (Rfree = 0.255 and 0.263), respectively. The overall structure contains two alpha/beta-type domains separated by a large cleft. At the base of the cleft lies Cys113, previously identified as a key active site nucleophile. The structure with a covalently bound thiamin analogue, which functions as a mechanism-based inactivating agent, confirms the location of the active site. Glu241 appears to function as an active site base to increase the nucleophilicity of Cys113. The mutant Glu241Gln was made and shows no activity. Thiaminase-I shows no sequence identity to other proteins in the sequence databases, but the three-dimensional structure shows very high structural homology to the periplasmic binding proteins and the transferrins.
Thiaminase I (EC 2.5.1.2) catalyzes the replacement of the thiazole moiety of thiamin with a wide variety of nucleophiles. Here we report the sequencing of a thiaminase I clone from Bacillus thiaminolyticus, the overexpression of the cloned gene in Escherichia coli, and the purification and characterization of the enzyme. Recombinant thiaminase I functions as a monomer with a Km for thiamin of 3.7 +/- 0.6 microM and a kcat of 34 s-1. Electrospray ionization Fourier-transform mass spectrometry identified a single sequencing error and demonstrated heterogeneity, finding molecular weights of 42,127, 42,198, and 42,255 due to added Ala and Gly-Ala at the amino terminus. Similar analysis of the 4-amino-2-methyl-6-chloropyrimidine inactivated enzyme indicated that the active site nucleophile involved in catalysis of the substitution reaction is located between Pro79 and Thr177. Subsequent cysteine-specific labeling and site-directed mutagenesis identified Cys113 as the active site nucleophile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.