Refractometry using a Brix refractometer has been proposed as a means to estimate IgG concentration in bovine maternal colostrum (MC). The refractometer has advantages over other methods of estimating IgG concentration in that the Brix refractometer is inexpensive, readily available, less fragile, and less sensitive to variation in colostral temperature, season of the year and other factors. Samples of first-milking MC were collected from 7 dairy farms in Maine, New Hampshire, Vermont, and Connecticut (n=84) and 1 dairy farm in California (n=99). The MC was milked from the cow at 6.1 ± 5.6h postparturition and a sample was evaluated for Brix percentage by using an optical refractometer. Two additional samples (30 mL) were collected from the milk bucket, placed in vials, and frozen before analysis of total IgG by radial immunodiffusion (RID) using commercially available plates and by turbidimetric immunoassay (TIA). The second sample was analyzed for total bacterial counts and coliform counts at laboratories in New York (Northeast samples) and California (California samples). The Brix percentage (mean ± SD) was 23.8 ± 3.5, IgG concentration measured by RID was 73.4 ± 26.2g/L, and IgG concentration measured by TIA was 67.5 ± 25.0 g/L. The Brix percentage was highly correlated (r=0.75) with IgG analyzed by RID. The Brix percentage cut point to define high- or low-quality colostrum (50 g of IgG/L measured by RID) that classified more samples correctly given the proportion of high- (86%) and low-quality (14%) samples in this study was 21%, which is slightly lower than other recent estimates of Brix measurements. At this cut point, the test sensitivity, specificity, positive and negative predictive values, and accuracy were 92.9, 65.5, 93.5, 63.3, and 88.5%, respectively. Measurement of IgG by TIA correlated with Brix (r=0.63) and RID (r=0.87); however, TIA and RID methods of IgG measurement were not consistent throughout the range of samples tested. We conclude that Brix measurement of total solids in fresh MC is an inexpensive, rapid, and satisfactorily accurate method of estimating IgG concentration. A cut point of 21% Brix to estimate samples of MC >50 g/L was most appropriate for our data. Measurement of IgG in MC by TIA differed from measurement by RID.
Nine New Hampshire Holstein dairies contributed to a study to investigate if colostrum quality could be predicted by cow performance in the previous lactation and by environmental factors during the 21-d prepartum period. The numbers of days below 5°C (D<), days above 23°C (D>), and days between 5 and 23°C (D) were used in the development of the regression equation. Between 2011 and 2014, 111 colostrum samples were obtained and analyzed for IgG. Producers recorded cow identification number, calf date of birth, sex of the calf, colostrum yield, hours from parturition to colostrum harvest, and weeks on pasture during the dry period (if any). Dairy Herd Improvement data from each cow and weather data were compiled for analysis. Information accessed was predicted transmitting abilities for milk, fat (PTAF), protein (PTAP), and dollars; previous lactation: milk yield, fat yield, fat percent, protein percent, protein yield, somatic cell score, days open, days dry, days in milk, and previous parity (PAR). Colostrum yield was negatively correlated with IgG concentration (r=-0.42) and D (r=-0.2). It was positively correlated with D> (r=0.30), predicted transmitting ability for milk (r=0.26), PTAF (r=0.21), and PTAP (r=0.22). Immunoglobulin G concentration (g/L) was positively correlated with days in milk (r=0.21), milk yield (r=0.30), fat yield (r=0.34), protein yield (r=0.26), days open (r=0.21), PAR (r=0.22), and tended to be positively correlated with DD (r=0.17). Immunoglobulin G concentration (g/L) was negatively correlated with D> (r=-0.24) and PTAF (r=-0.21) and tended to be negatively correlated with PTAP (r=-0.18). To determine the best fit, values >0 were transformed to natural logarithm. All nontransformed variables were also used to develop the model. A variance inflation factor analysis was conducted, followed by a backward elimination procedure. The resulting regression model indicated that changes in Ln fat yield (β=2.29), Ln fat percent (β=2.15), Ln protein yield (β=-2.25), and Ln protein percent (β=2.1) had largest effect on LnIgG. This model was validated using 27 colostrum samples from 9 different farms not used in the model. The difference between means for actual and predicted colostrum quality (IgG, g/L) was 13.6g/L. Previous lactation DHI data and weather data can be used to predict the IgG concentration of colostrum.
Calves fed large amounts of milk replacer (MR) gain more body weight preweaning than calves fed less-aggressive programs; however, postweaning growth may be reduced. Limited research suggests that less than optimal digestion of the postweaned diet due to large amounts of MR with reduced dry feed intake preweaning may contribute to growth impairment postweaning. Current research was conducted to compare growth and postweaning digestion in 3-d-old male Holstein calves fed various MR programs. The MR programs were a conventional [CON; 0.44 kg of dry matter (DM) 21% crude protein (CP), 21% fat powder fed for 42d], moderate (MOD; 0.66 kg of DM 27% CP, 17% fat powder fed for 42d), and aggressive program (AGG; up to 0.87 kg of DM 27% CP, 17% fat powder fed for 49d). All calves were fed a 20% CP textured starter and water ad libitum for 56d. The trial used 96 calves (initially 41 ± 1.9 kg of body weight) received 5 wk apart in 2 groups of 48 calves. During d 51 to 56, fecal samples were collected from 5 calves per treatment randomly selected from calves in the first group. Selected nutrients and acid-insoluble ash (used as an internal flow marker) were analyzed in the starter and feces to estimate digestibility. Data were analyzed as a randomized complete block design with starting time of each group of calves as a block. Repeated measure analysis was performed on overall (0 to 56d) data. Means were separated with a protected least significant difference test. Pen was the experimental unit. Calves fed CON had the least average daily gain [CON=0.35, MOD=0.51, and AGG=0.55 kg/d; standard error of the mean (SEM)=0.018], feed efficiency (CON=0.35, MOD=0.49, and AGG=0.48 gain/feed, SEM=0.016), and change in hip width (CON=3.3, MOD=4.1, and AGG=4.1cm, SEM=0.20) compared with calves fed other programs. Calves fed AGG had the greatest change in BCS and least starter intake compared with calves fed the other programs. Digestibility of organic matter was 79, 78, and 68% and neutral detergent fiber was 54, 51, and 26% for calves fed programs CON, MOD, and AGG, respectively, and were least for calves fed AGG. These results indicate that postweaning digestion is lower than optimal and contributes to lower postweaning growth in calves fed aggressive compared with conventional or moderate MR programs.
Studies have shown that calves fed milk replacers (MR) with crude protein (CP) concentrations greater than 20%, as typically found in conventional MR, have higher dry matter intakes (DMI) and greater average daily gains (ADG) but consume less starter, which can lead to stress during weaning and reduced rumen development. The greater amount of CP being fed to preweaned calves may alter their nitrogen (N) balance, and excess N may be excreted in the urine. The objective of this study was to determine N utilization in preweaned calves fed diets varying in the amount of CP and MR fed. This study used 24 newborn dairy heifer calves blocked by birth and randomly assigned to 1 of 3 treatments: (1) 446g dry matter (DM) of a conventional MR (CON; 20% CP, 20% fat), (2) 669g DM of a moderately high protein MR (moderate; MOD; 26% CP, 18% fat), or (3) 892g DM of a moderately high protein MR (aggressive; AGG; 26% CP, 18% fat). All calves had ad libitum access to starter and water. Both MR and starter were medicated with decoquinate. During weaning (d 43-49), the morning MR feeding ceased. On d 50, all MR feedings ended; however, starter and water intakes were continuously recorded until d 56. At 5wk of age, urine was collected using urinary catheters for 3d and chromium oxide was administered by bolus at 2g/d for 7d to estimate N efficiency. Calves fed MOD and AGG had similar starter intakes, feed efficiencies, and ADG, with the combined treatments having reduced starter intakes (258 vs. 537g/d), greater ADG (674 vs. 422g/d), and improved feed efficiency (0.57 vs. 0.45 gain:feed) compared with CON calves preweaning. However, DMI and water intake were similar across all treatments. Results from the N utilization phase showed that MOD and AGG treatments had similar but lower N efficiency compared with CON calves (45.5 vs. 52.7%). This could be due to MOD- and AGG-fed calves having greater urine volume and thereby, greater combined urine N output compared with CON calves (17.6 vs. 12.1 g/d). In summary, feeding >0.66kg (DM) from a 26% CP MR increased ADG and improved feed efficiency during the preweaning period but reduced starter intake and lowered N efficiency.
Fifty-two dairy calves were blocked by birth date and, within each block, randomly assigned to 1 of 4 treatments to investigate the effects of incremental levels of sodium bicarbonate (NaHCO(3)) on IgG metabolism. Treatments were (1) colostrum replacer (CR)+0 g of NaHCO(3) (control); (2) CR+15 g of NaHCO(3); (3) CR+30 g of NaHCO(3); or (4) CR+45 g of NaHCO(3). Calves were fed colostrum replacer (>200 g of IgG) in one feeding within 45 min of birth (0 h) and 2 L of milk replacer at 12, 24, 36, and 48 h. Only calves born in calving pens from multiparous cows with no dystocia were used in this study. Blood samples were taken at 0, 6, 12, 24, and 48 h postpartum, and serum was analyzed for IgG using radial immunoassay and bicarbonate using spectrophotometry. Feeding increasing levels of sodium bicarbonate had negative linear effects on IgG concentration, IgG apparent efficiency of absorption, and IgG area under the curve, primarily due to the effect of the highest dose of NaHCO(3) (45 g). Sodium bicarbonate treatments had no effect on serum bicarbonate concentration. However, area under the curve of serum bicarbonate increased linearly with the amount of NaHCO(3) fed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.