Neurofibrillary tangles (NFTs) are the most common intraneuronal inclusion in the brains of patients with neurodegenerative diseases and have been implicated in mediating neuronal death and cognitive deficits. Here, we found that mice expressing a repressible human tau variant developed progressive age-related NFTs, neuronal loss, and behavioral impairments. After the suppression of transgenic tau, memory function recovered, and neuron numbers stabilized, but to our surprise, NFTs continued to accumulate. Thus, NFTs are not sufficient to cause cognitive decline or neuronal death in this model of tauopathy.
Trinucleotide expansions cause disease by both protein-and RNAmediated mechanisms. Unexpectedly, we discovered that CAG expansion constructs express homopolymeric polyglutamine, polyalanine, and polyserine proteins in the absence of an ATG start codon. This repeat-associated non-ATG translation (RAN translation) occurs across long, hairpin-forming repeats in transfected cells or when expansion constructs are integrated into the genome in lentiviral-transduced cells and brains. Additionally, we show that RAN translation across human spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1) CAG expansion transcripts results in the accumulation of SCA8 polyalanine and DM1 polyglutamine expansion proteins in previously established SCA8 and DM1 mouse models and human tissue. These results have implications for understanding fundamental mechanisms of gene expression. Moreover, these toxic, unexpected, homopolymeric proteins now should be considered in pathogenic models of microsatellite disorders.T ranslation of mRNA into protein is an exquisitely regulated, almost error-free process. Well-established rules of translational initiation have been used as a cornerstone in biology to understand gene expression and to predict the consequences of disease-causing mutations (1). For microsatellite expansion disorders, mutations within or outside ATG-initiated ORFs are thought to cause disease either by protein gain-of-function, protein loss-of-function, or RNA gain-of-function mechanisms (2, 3).Microsatellite expansion mutations that express polyglutamine (polyGln) expansion proteins include Huntington disease (Huntingtin, HD), spinal bulbar muscular atrophy, and spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17. Since the discovery of these CAG·CTG expansion mutations, efforts to understand disease mechanisms have focused on elucidating the molecular effects of the polyGln proteins expressed from these loci. Although these polyGln expansion proteins bear no similarity to each other apart from the polyGln tract, a hallmark of these diseases is protein accumulation and aggregation in nuclear or cytoplasmic inclusions. Surprisingly, although the polyGln expansion proteins are widely expressed in the CNS and other tissues, only restricted populations of neurons are vulnerable in each disease (3).Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are the best-characterized examples of RNA-mediated expansion disorders (2). The mutation causing DM1 is a CTG-repeat expansion located in the 3′ UTR of the dystrophia myotonica-protein kinase (DMPK) gene. Although DM1 can be clinically more severe than DM2, the discovery of the DM2 mutation and several mouse models provide strong support that many features of these diseases result from RNA gain-of-function effects in which the dysregulation of RNA-binding proteins is mediated by the expression of CUG and CCUG transcripts (4). Additionally, RNA gain-of-function effects have been reported for CGG and CAG expansion RNAs (5, 6).Both RNA and protein mechanisms appear to operate...
Here, we describe the generation of a novel transgenic mouse model of human tauopathy. The rTg(tau P301L )4510 mouse expresses the P301L mutation in tau (4R0N) associated with frontotemporal dementia and parkinsonism linked to chromosome 17. Transgene expression was driven by a forebrain-specific Ca 2ϩ calmodulin kinase II promoter system resulting in high levels of expression in the hippocampus and neocortex. Importantly, transgene expression in this model is induced via the tetracycline-operon responsive element and is suppressed after treatment with doxycycline. Continued transgene expression in rTg(tau P301L )4510 mice results in age-dependent development of many salient characteristics of hereditary human dementia. From an early age, immunohistochemical studies demonstrated abnormal biochemical processing of tau and the presence of pathological conformation-and phosphorylation-dependent epitopes. Neurofibrillary tangle (NFT) pathology was first observed in the neocortex and progressed into the hippocampus and limbic structures with increasing age. Consistent with the formation of NFTs, immunoblots indicated an age-dependent transition of accumulating tau species from Sarkosyl soluble 55 kDa to insoluble hyperphosphorylated 64 kDa. Ultrastructural analysis revealed the presence of straight tau filaments. Furthermore, the effects of tau P301L expression on spatial reference memory were longitudinally tested using the Morris water maze. Compared with nontransgenic age-matched control littermates, rTg(tau P301L )4510 mice developed significant cognitive impairments from 4 months of age. Memory deficits were accompanied by gross forebrain atrophy and a prominent loss of neurons, most strikingly in hippocampal subdivision CA1. Collectively, these data describe a novel transgenic mouse that closely mimics human tauopathy and may represent an important model for the future study of tau-related neurodegenerative disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.