Due to increased concerns regarding unidentified impurities in delta-8 tetrahydrocannabinol (Δ-8 THC) consumer products, a study using Nuclear Magnetic Resonance (NMR), high performance liquid chromatography (HPLC), and mass spectrometry (MS) was conducted to further investigate these products. Ten Δ-8 THC products, including distillates and ready to use vaporizer cartridges, were analyzed. The results yield findings that the tested products contain several impurities in concentrations far beyond what is declared on certificates of analysis for these products. As Δ-8 THC is a synthetic product synthesized from cannabidiol (CBD), there are valid concerns regarding the presence of impurities in these products with unknown effects on the human body. Compounding this problem is apparent inadequate testing of these products by producers and independent laboratories.
A new NMR-based method for the discrimination of olive oils of any grade from seed oils and mixtures thereof was developed with the aim of allowing the verification of olive oil authenticity. Ten seed oils and seven monovarietal and blended extra virgin olive oils were utilized to develop a principal component analysis (PCA) based analysis of 1H NMR spectra to rapidly and accurately determine the authenticity of olive oils. Another twenty-eight olive oils were utilized to test the principal component analysis (PCA) based analysis. Detection of seed oil adulteration levels as low as 5% v/v has been shown using simple one-dimensional proton spectra obtained using a 400 MHz NMR spectrometer equipped with a room temperature inverse probe. The combination of simple sample preparation, rapid sample analysis, novel processing parameters, and easily interpreted results, makes this method an easily accessible tool for olive oil fraud detection by substitution or dilution compared to other methods already published.
Nuclear magnetic resonance (NMR)-based screening of materials is a powerful tool for quality control, authenticity testing, and purity testing of compounds.However, reliance on 3-(trimethylsilyl)-propane-1-sulfonate (DSS) and 3-(trimethylsilyl)propanoic acid (TMSP) for referencing the spectra of aqueous samples is not without hazard, particularly with automated analyses. The assumption that these reference signals always represent 0 ppm is ubiquitous in NMR spectroscopy and is routinely used for spectral alignment. However, it has been found that cyclodextrins readily generate inclusion complexes with DSS and TMSP with the effect of rendering this assumption incorrect. These inclusion complexes alter the electronic shielding of the trimethylsilane functional groups on DSS and TMSP yielding a small, but significant, shift to a higher frequency in the signal relied upon for spectral referencing. As a result, samples containing traces of these compounds may be incorrectly declared fraudulent, inconsistent with standards, or adulterated. In order to maintain the viability of this screening method, vigilance and/or improved referencing of spectra is needed.
Adulteration of food products is a widespread problem of great concern to society and dairy products are no exception to this. Due to new methods of adulteration being devised in order to circumvent existing detection methods, new detection methods must be developed to counter fraud. Bovine hard cheeses such as Asiago, Parmesan, and Romano are widely sold and consumed in pre-grated form for convenience. Due to being processed products, there is ample opportunity for the introduction of inexpensive adulterants and as such, there is concern regarding the authenticity of these products. An analytical method was developed using a simple organic extraction to verify the authenticity of bovine hard cheese products by examining the lipid profile of these cheeses via proton Nuclear Magnetic Resonance (NMR) spectroscopy. In this study, 52 samples of pre-grated hard cheese were analyzed as a market survey and a significant number of these samples were found to be adulterated with vegetable oils. This method is well suited to high throughput analysis of these products and relies on ratiometrics of the lipids in the samples themselves. Genuine cheeses were found to have a very consistent lipid profile from sample to sample, improving the power of this approach to detect vegetable oil adulteration. The method is purely ratiometric with no need for internal or external references, reducing sample preparation time and reducing the potential for the introduction of error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.