Insulin suppresses secretion of very low density lipoprotein (VLDL) apolipoprotein (apo) B in primary rodent hepatocytes (RH) by favoring the degradation of B100, the larger form of apo B, through post-endoplasmic reticulum proteolysis. Sortilin 1 (sort1), a multi-ligand sorting receptor, has been proposed as a mediator of lysosomal B100 degradation by directing B100 in pre-VLDL to lysosomes rather than allowing maturation to VLDL and secretion. The purpose of our studies was to investigate the role of sort1 in insulin-dependent degradation of apo B. Using liver derived McArdle RH7777 (McA) cells, we demonstrate that insulin suppresses VLDL B100 secretion via a phosphatidylinositide 3-kinase (PI3K) dependent process that is inhibitable by wortmannin in a fashion similar to RH. Using McA cells and in situ cross-linking, we demonstrate that insulin acutely (30 min) stimulates the interaction of B100 with sort1. The insulin-induced interaction of sort1-B100 is markedly enhanced when lysosomal degradation is inhibited by Bafilomycin A1 (BafA1), an inhibitor of lysosomal acidification. As BafA1 also prevents insulin suppressive effects on apo B secretion, our results suggest that sort1-B100 interaction stimulated by insulin transiently accumulates with BafA1 and favors B100 secretion by default.
Insulin acutely stimulates the degradation of apolipoprotein B (apo B) which decreases very low density lipoprotein (VLDL) secretion by liver. Insulin-dependent apo B degradation (IDAD) occurs following phosphatidylinositide 3-kinase (PI3K) activation and involves lysosomal degradation. Insulin suppression of apo B secretion is blocked by over-expression of phosphatase and tensin homologue (PTEN) in McArdle RH7777 (McA) cells suggesting the importance of Class I PI3K generated PI (3,4,5) triphosphate (PIP3) in IDAD. Classical autophagy inhibitors including 3-methyladenine, L-asparagine and bafilomycin A1 also blocked the ability of insulin to suppress apo B secretion by rat hepatocytes (RH) suggesting that IDAD occurs through an autophagy-related mechanism. IDAD is also blocked following over-expression in McA cells of a dominant negative kinase-defective Vps34, a class III PI3K that generates PI 3-monophosphate required for autophagy. Vps34 inhibition of IDAD occurs without altering insulin-dependent S473 phosphorylation Akt indicating PI3K/PIP3/Akt signaling is intact. Cellular p62/SQSTM1, an inverse indicator of autophagy, is increased with insulin treatment consistent with the known ability of insulin to inhibit autophagy, and therefore the role of insulin in utilizing components of autophagy for apo B degradation is unexpected. Thapsigargan, an inducer of endoplasmic reticulum (ER) stress, and a recently demonstrated autophagy inhibitor, blocked apo B secretion which contrasted with other autophagy inhibitors and mutant Vps34 results which were permissive with respect to apo B secretion. Pulse chase studies indicated that intact B100 and B48 proteins were retained in cells treated with thapsigargan consistent with their accumulation in autophagosomal vacuoles. Differences between IDAD and ER stress-coupled autophagy mediated by thapsgargin suggest that IDAD involves an unique form of autophagy. Insulin action resulting in hepatic apo B degradation is novel and important in understanding regulation of hepatic VLDL metabolism.
SummaryRecent studies have linked health fates of children to environmental exposures of their great grandparents. However, few studies have considered whether ancestral exposures influence immune function across generations. Here, we report transgenerational inheritance of altered T cell responses resulting from maternal (F0) exposure to the aryl hydrocarbon receptor ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since F0 exposure to TCDD has been linked to transgenerational transmission of reproductive problems, we asked whether maternal TCDD exposure also caused transgenerational changes in immune function. F0 exposure caused transgenerational effects on the CD8+ T cell response to influenza virus infection in females but not in males. Outcrosses showed changes were passed through both parental lineages. These data demonstrate that F0 exposure to an aryl hydrocarbon receptor (AHR) agonist causes durable changes to immune responses that can affect subsequent generations. This has broad implications for understanding how the environment of prior generations shapes susceptibility to pathogens and antiviral immunity in later generations.
Chemicals used in unconventional oil and gas (UOG) operations have the potential to cause adverse biological effects, but this has not been thoroughly evaluated. A notable knowledge gap is their impact on development and function of the immune system. Herein, we report an investigation of whether developmental exposure to a mixture of chemicals associated with UOG operations affects the development and function of the immune system. We used a previously characterized mixture of 23 chemicals associated with UOG, and which was demonstrated to affect reproductive and developmental endpoints in mice. C57Bl/6 mice were maintained throughout pregnancy and during lactation on water containing two concentrations of this 23-chemical mixture, and the immune system of male and female adult offspring was assessed. We comprehensively examined the cellularity of primary and secondary immune organs, and used three different disease models to probe potential immune effects: house dust mite-induced allergic airway disease, influenza A virus infection, and experimental autoimmune encephalomyelitis (EAE). In all three disease models, developmental exposure altered frequencies of certain T cell sub-populations in female, but not male, offspring. Additionally, in the EAE model disease onset occurred earlier and was more severe in females. Our findings indicate that developmental exposure to this mixture had persistent immunological effects that differed by sex, and exacerbated responses in an experimental model of autoimmune encephalitis. These observations suggest that developmental exposure to complex mixtures of water contaminants, such as those derived from UOG operations, could contribute to immune dysregulation and disease later in life.
Secretion of apolipoprotein (apo) B-containing lipoproteins by the liver depends mainly upon apo B availability and microsomal triglyceride transfer protein (MTP) activity and is subject to insulin regulation. Hepatic MTP mRNA expression is negatively regulated by insulin which correlates with inhibition of apo B secretion suggesting that insulin might suppress apo B secretion through an MTP-dependent mechanism. To investigate this possibility, we examined the acute effect of insulin on hepatic MTP expression and activity levels in vivo utilizing apobec-1 −/− mice. Insulin did not significantly alter hepatic MTP mRNA levels or lipid transfer activity 2 h following injection, but suppressed expression of genes important in gluconeogenesis. To study the specific role of MTP, we expressed human MTP (hMTP) in primary rat hepatocytes using adenoviral gene transfer. Increased expression of hMTP resulted in a 47.6 ± 17.9 % increase in total apo B secreted. Incubation of hepatocytes with insulin suppressed apo B secretion by 50.1 ± 10.8 % in cells over-expressing hMTP and by 53.0 ± 12.4 % in control transfected hepatocytes. Results indicate that even under conditions of increased hepatic apo B secretion mediated by MTP, responsiveness of hepatocytes to insulin to suppress apo B secretion is maintained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.