Responses of sensory neurons are often modeled using a weighted combination of rectified linear subunits. Since these subunits often cannot be measured directly, a flexible method is needed to infer their properties from the responses of downstream neurons. We present a method for maximum likelihood estimation of subunits by soft-clustering spike-triggered stimuli, and demonstrate its effectiveness in visual neurons. For parasol retinal ganglion cells in macaque retina, estimated subunits partitioned the receptive field into compact regions, likely representing aggregated bipolar cell inputs. Joint clustering revealed shared subunits between neighboring cells, producing a parsimonious population model. Closed-loop validation, using stimuli lying in the null space of the linear receptive field, revealed stronger nonlinearities in OFF cells than ON cells. Responses to natural images, jittered to emulate fixational eye movements, were accurately predicted by the subunit model. Finally, the generality of the approach was demonstrated in macaque V1 neurons.
The visual message conveyed by a retinal ganglion cell (RGC) is often summarized by its spatial receptive field, but in principle should also depend on other cells' responses and natural image statistics. To test this idea, linear reconstruction (decoding) of natural images was performed using combinations of responses of four high-density macaque RGC types, revealing consistent visual representations across retinas. Each cell's visual message, defined by the optimal reconstruction filter, reflected natural image statistics, and resembled the receptive field only when nearby, same-type cells were included. Reconstruction from each cell type revealed different and largely independent visual representations, consistent with their distinct properties. Stimulus-independent correlations primarily affected reconstructions from noisy responses. Nonlinear response transformation slightly improved reconstructions with either ON or OFF parasol cells, but not both. Inclusion of ON-OFF interactions enhanced reconstruction by emphasizing oriented edges, consistent with linear-nonlinear encoding models. Spatiotemporal reconstructions revealed similar spatial visual messages.
The visual message conveyed by a retinal ganglion cell (RGC) is often summarized by its spatial receptive field, but in principle also depends on the responses of other RGCs and natural image statistics. This possibility was explored by linear reconstruction of natural images from responses of the four numerically-dominant macaque RGC types. Reconstructions were highly consistent across retinas. The optimal reconstruction filter for each RGC – its visual message – reflected natural image statistics, and resembled the receptive field only when nearby, same-type cells were included. ON and OFF cells conveyed largely independent, complementary representations, and parasol and midget cells conveyed distinct features. Correlated activity and nonlinearities had statistically significant but minor effects on reconstruction. Simulated reconstructions, using linear-nonlinear cascade models of RGC light responses that incorporated measured spatial properties and nonlinearities, produced similar results. Spatiotemporal reconstructions exhibited similar spatial properties, suggesting that the results are relevant for natural vision.
BackgroundWearable and connected health devices along with the recent advances in mobile and cloud computing provide a continuous, convenient-to-patient, and scalable way to collect personal health data remotely. The Wavelet Health platform and the Wavelet wristband have been developed to capture multiple physiological signals and to derive biometrics from these signals, including resting heart rate (HR), heart rate variability (HRV), and respiration rate (RR).ObjectiveThis study aimed to evaluate the accuracy of the biometric estimates and signal quality of the wristband.MethodsMeasurements collected from 35 subjects using the Wavelet wristband were compared with simultaneously recorded electrocardiogram and spirometry measurements.ResultsThe HR, HRV SD of normal-to-normal intervals, HRV root mean square of successive differences, and RR estimates matched within 0.7 beats per minute (SD 0.9), 7 milliseconds (SD 10), 11 milliseconds (SD 12), and 1 breaths per minute (SD 1) mean absolute deviation of the reference measurements, respectively. The quality of the raw plethysmography signal collected by the wristband, as determined by the harmonic-to-noise ratio, was comparable with that obtained from measurements from a finger-clip plethysmography device.ConclusionsThe accuracy of the biometric estimates and high signal quality indicate that the wristband photoplethysmography device is suitable for performing pulse wave analysis and measuring vital signs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.