Release of product from the active site is the rate-limiting step in a number of enzymatic reactions, including maltose hydrolysis by glucoamylase (GA). With GA, an enzymatic conformational change has been associated with the product release step. Solvent characteristics such as viscosity can strongly influence protein conformational changes. Here we show that the rate-limiting step of GA has a rather complex dependence on solvent characteristics. Seven different cosolvents were added to the GA/maltose reaction solution. Five of the cosolvents, all having an ethylene glycol base, resulted in an increase in activity at low concentration of cosolvent and variable decreases in activity at higher concentrations. The increase in enzyme activity was dependent on polymer length of the cosolvent; the longer the polymer, the lower the concentration needed. The maximum increase in catalytic activity at 45 degrees C (40-45%) was obtained with the three longest polymers (degree of polymerization from 200 to 8000). A further increase in activity to 60-65% was obtained at 60 degrees C. The linear relationship between ln(kcat) and (viscosity)2 obtained with all the cosolvents provides further evidence that product release is the rate-limiting step in the GA catalytic mechanism. A substantial increase in the turnover rate of GA by addition of relatively small amounts of a cosolvent has potential applications for the food industry where high-fructose corn syrup (HFCS) is one of the primary products produced with GA. Since maltodextrin hydrolysis by GA is by far the slowest step in the production of HFCS, increasing the catalytic rate of GA can substantially reduce the process time.
Recombinant structural proteins (VP1 and VP2) of the human parvovirus B19 have been expressed simultaneously using the baculovirus expression system to form virus-like particles (VLPs) that have potential use as vaccines. In this study, we report optimization of extraction conditions to recover these VLPs from cell paste. Under hypotonic conditions with neutral pH these VLPs were poorly extracted (up to 3% extraction). Addition of reducing agents, detergents, salts, and sonication did not improve the extractability. While screening for conditions to improve the extractability of the VLPs, we discovered that a combination of higher pH and elevated processing temperature significantly increased the extraction. Whereas increasing pH alone increased extractability from 3% to 6% (pH increased from 8.0 to 9.5), the effect of elevated temperature was much more substantial. At 50 degrees C, we observed the extraction to be more than fivefold higher than that at room temperature (up to 25% extracted at pH 9.0). The kinetics of extraction at elevated temperatures showed a rapid initial rate of extraction (on the order of minutes) followed by a plateau. In addition, we compared the extraction of VP1 expressed alone. VP1 expressed alone is incapable of forming VLPs. We observed that non-VLP VP1 was easily extractable (up to 60% extracted) under conditions in which the VP1 + VP2 VLPs were not extractable. From these studies we conclude that parvovirus B19 structural proteins expressed to form VLPs have a hindered extractability as compared with non-VLP protein. This hindrance to extraction can be significantly reduced by processing at elevated temperatures and an increased pH, possibly due to the enhanced rates of solubilization and diffusion.
A United States Government (USG) interagency group, the Filovirus Animal Non-Clinical Group (FANG), has been established to support the development of biodefense medical countermeasures (MCMs). As both vaccines and therapeutics are licensed using “non-traditional pathways”, such as the U.S. Food and Drug Administration’s (FDA) Animal Rule (AR), non-human primate (NHP) models and associated assays have been developed and standardized across BSL4 testing sites to evaluate candidate products. Vaccine candidates are evaluated using these NHP models, and through this public–private partnership, a meta-analysis of NHP control data has been conducted and submitted to the FDA as a master file. This is an example of how existing NHP control data can be leveraged in lieu of conducting separate natural history studies at multiple testing facilities to demonstrate the consistency of a standardized animal model for vaccine development. As a result, animal use can be minimized and the duplication of effort avoided, thus reducing the amount of time needed to conduct additional studies, as well as the cost of vaccine candidate development. This successful strategy may be applied to other pathogens of high consequence for vaccine development, and shows how strategic preparedness for biodefense can be leveraged in response to outbreaks and public health emergencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.