Understanding molecular mechanisms underlying the complexity of allosteric regulation in proteins has attracted considerable attention in drug discovery due to the benefits and versatility of allosteric modulators in providing desirable selectivity against protein targets while minimizing toxicity and other side effects. The proliferation of novel computational approaches for predicting ligand–protein interactions and binding using dynamic and network-centric perspectives has led to new insights into allosteric mechanisms and facilitated computer-based discovery of allosteric drugs. Although no absolute method of experimental and in silico allosteric drug/site discovery exists, current methods are still being improved. As such, the critical analysis and integration of established approaches into robust, reproducible, and customizable computational pipelines with experimental feedback could make allosteric drug discovery more efficient and reliable. In this article, we review computational approaches for allosteric drug discovery and discuss how these tools can be utilized to develop consensus workflows for in silico identification of allosteric sites and modulators with some applications to pathogen resistance and precision medicine. The emerging realization that allosteric modulators can exploit distinct regulatory mechanisms and can provide access to targeted modulation of protein activities could open opportunities for probing biological processes and in silico design of drug combinations with improved therapeutic indices and a broad range of activities.
With the increase in CO2 emissions worldwide and its dire effects, there is a need to reduce CO2 concentrations in the atmosphere. Alpha-carbonic anhydrases (α-CAs) have been identified as suitable sequestration agents. This study reports the sequence and structural analysis of 15 α-CAs from bacteria, originating from hydrothermal vent systems. Structural analysis of the multimers enabled the identification of hotspot and interface residues. Molecular dynamics simulations of the homo-multimers were performed at 300 K, 363 K, 393 K and 423 K to unearth potentially thermostable α-CAs. Average betweenness centrality (BC) calculations confirmed the relevance of some hotspot and interface residues. The key residues responsible for dimer thermostability were identified by comparing fluctuating interfaces with stable ones, and were part of conserved motifs. Crucial long-lived hydrogen bond networks were observed around residues with high BC values. Dynamic cross correlation fortified the relevance of oligomerization of these proteins, thus the importance of simulating them in their multimeric forms. A consensus of the simulation analyses used in this study suggested high thermostability for the α-CA from Nitratiruptor tergarcus. Overall, our novel findings enhance the potential of biotechnology applications through the discovery of alternative thermostable CO2 sequestration agents and their potential protein design.
Carbonic anhydrases (CAs) have been identified as ideal catalysts for CO2 sequestration. Here, we report the sequence and structural analyses as well as the molecular dynamics (MD) simulations of four γ-CAs from thermophilic bacteria. Three of these, Persephonella marina, Persephonella hydrogeniphila, and Thermosulfidibacter takaii originate from hydrothermal vents and one, Thermus thermophilus HB8, from hot springs. Protein sequences were retrieved and aligned with previously characterized γ-CAs, revealing differences in the catalytic pocket residues. Further analysis of the structures following homology modeling revealed a hydrophobic patch in the catalytic pocket, presumed important for CO2 binding. Monitoring of proton shuttling residue His69 (P. marina γ-CA numbering) during MD simulations of P. hydrogeniphila and P. marina’s γ-CAs (γ-PhCA and γ-PmCA), showed a different behavior to that observed in the γ-CA of Escherichia coli, which periodically coordinates Zn2+. This work also involved the search for hotspot residues that contribute to interface stability. Some of these residues were further identified as key in protein communication via betweenness centrality metric of dynamic residue network analysis. T. takaii’s γ-CA showed marginally lower thermostability compared to the other three γ-CA proteins with an increase in conformations visited at high temperatures being observed. Hydrogen bond analysis revealed important interactions, some unique and others common in all γ-CAs, which contribute to interface formation and thermostability. The seemingly thermostable γ-CA from T. thermophilus strangely showed increased unsynchronized residue motions at 423 K. γ-PhCA and γ-PmCA were, however, preliminarily considered suitable as prospective thermostable CO2 sequestration agents.
Atovaquone (ATQ) is a drug used to prevent and treat malaria that functions by targeting the Plasmodium falciparum cytochrome b (PfCytb) protein. PfCytb catalyzes the transmembrane electron transfer (ET) pathway which maintains the mitochondrial membrane potential. The ubiquinol substrate binding site of the protein has heme bL, heme bH and iron-sulphur [2FE-2S] cluster cofactors that act as redox centers to aid in ET. Recent studies investigating ATQ resistance mechanisms have shown that point mutations of PfCytb confer resistance. Thus, understanding the resistance mechanisms at the molecular level via computational approaches incorporating phospholipid bilayer would help in the design of new efficacious drugs that are also capable of bypassing parasite resistance. With this knowledge gap, this article seeks to explore the effect of three drug resistant mutations Y268C, Y268N and Y268S on the PfCytb structure and function in the presence and absence of ATQ. To draw reliable conclusions, 350 ns all-atom membrane (POPC:POPE phospholipid bilayer) molecular dynamics (MD) simulations with derived metal parameters for the holo and ATQ-bound -proteins were performed. Thereafter, simulation outputs were analyzed using dynamic residue network (DRN) analysis. Across the triplicate MD runs, hydrophobic interactions, reported to be crucial in protein function were assessed. In both, the presence and absence of ATQ and a loss of key active site residue interactions were observed as a result of mutations. These active site residues included: Met 133, Trp136, Val140, Thr142, Ile258, Val259, Pro260 and Phe264. These changes to residue interactions are likely to destabilize the overall intra-protein residue communication network where the proteins’ function could be implicated. Protein dynamics of the ATQ-bound mutant complexes showed that they assumed a different pose to the wild-type, resulting in diminished residue interactions in the mutant proteins. In summary, this study presents insights on the possible effect of the mutations on ATQ drug activity causing resistance and describes accurate MD simulations in the presence of the lipid bilayer prior to conducting inhibitory drug discovery for the PfCytb-iron sulphur protein (Cytb-ISP) complex.
Accelerated CO2 sequestration uses carbonic anhydrases (CAs) as catalysts; thus, there is much research on these enzymes. The γ-CA from Escherichia coli (EcoCA-γ) was the first γ-CA to display an active site that switches between “open” and “closed” states through Zn2+ coordination by the proton-shuttling His residue. Here, we explored this occurrence in γ-CAs from hydrothermal vent bacteria and also the γ-CA from Methanosarcina thermophila (Cam) using molecular dynamics. Ten sequences were analyzed through multiple sequence alignment and motif analysis, along with three others from a previous study. Conservation of residues and motifs was high, and phylogeny indicated a close relationship amongst the sequences. All structures, like EcoCA-γ, had a long loop harboring the proton-shuttling residue. Trimeric structures were modeled and simulated for 100 ns at 423 K, with all the structures displaying thermostability. A shift between “open” and “closed” active sites was observed in the 10 models simulated through monitoring the behavior of the His proton-shuttling residue. Cam, which has two Glu proton shuttling residues on long loops (Glu62 and Glu84), also showed an active site switch affected by the first Glu proton shuttle, Glu62. This switch was thus concluded to be common amongst γ-CAs and not an isolated occurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.