We describe an annealing procedure that computes the normalized N-cut of a weighted graph G. The first phase transition computes the solution of the approximate normalized 2-cut problem, while the low temperature solution computes the normalized N-cut. The intermediate solutions provide a sequence of refinements of the 2-cut that can be used to split the data to K clusters with 2 ≤ K ≤ N. This approach only requires specification of the upper limit on the number of expected clusters N, since by controlling the annealing parameter we can obtain any number of clusters K with 2 ≤ K ≤ N. We test the algorithm on an image segmentation problem and apply it to a problem of clustering high dimensional data from the sensory system of a cricket.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.