Motivated by the cost savings that can be obtained by sharing resources in a network context, we consider a stylized, yet representative, model for the coordination of maintenance and service logistics for a geographic network of assets. Capital assets, such as wind turbines in a wind park, require maintenance throughout their long lifetimes. Two types of preventive maintenance are considered: planned maintenance at periodic, scheduled opportunities, and opportunistic maintenance at unscheduled opportunities.The latter type of maintenance arises due to the network context: when an asset in the network fails, this constitutes an opportunity for preventive maintenance for the other assets in the network.So as to increase the realism of the model at hand and its applicability to various sectors, we consider the option of not-deferring and of deferring planned maintenance after the occurrence of opportunistic maintenance. We also assume that preventive maintenance may not always restore the condition of the system to 'as good as new'. By formulating this problem as a semi-Markov decision process, we characterize the optimal policy as a control limit policy (depending on the remaining time until the next planned maintenance) that indicates on the one hand when it is optimal to perform preventive maintenance and on the other hand when maintenance resources should be shared if an opportunity in the network arises. In order to facilitate managerial insights on the effect of each parameter on the cost, we provide a closed-form expression for the long-run rate of cost for any given control limit policy (depending on the remaining time until the next planned maintenance) and compare the costs (under the optimal policy) to those of sub-optimal policies that neglect the opportunity for resource sharing. We illustrate our findings using data from the wind energy industry.airports require maintenance throughout their (long) lifetimes. Such capital assets are crucial to the primary processes of their users/operators and unexpected failures may have very significant negative impacts and even life threatening consequences. In order to avoid or to minimize failures, asset owners perform preventive maintenance activities, with the objective to retain or to restore a system back to a satisfactory operating condition. The costs of both these maintenance activities, and of their respective unscheduled downtimes, represent one of the key drivers of an organization's total costs. Such maintenance costs constitute up to 70% of the total value of the end product (Bevilacqua and Braglia, 2000;Mobley, 2002), and this percentage is rapidly increasing (Zio and Compare, 2013). Hence, there is great incentive for asset owners to optimize the maintenance planning.The most common maintenance practices are the so-called corrective maintenance and the planned maintenance. The former as the name suggests proposes the repair of the asset upon failure, while the latter proposes a fixed service schedule for the field service engineers with the objective...
Problem definition: Unexpected failures of equipment can have severe consequences and costs. Such unexpected failures can be prevented by performing preventive replacement based on real-time degradation data. We study a component that degrades according to a compound Poisson process and fails when the degradation exceeds the failure threshold. An online sensor measures the degradation in real time, but interventions are only possible during planned downtime. Academic/practical relevance: We characterize the optimal replacement policy that integrates real-time learning from the online sensor. We demonstrate the effectiveness in practice with a case study on interventional x-ray machines. The data set of this case study is available in the online companion. As such, it can serve as a benchmark data set for future studies on stochastically deteriorating systems. Methodology: The degradation parameters vary from one component to the next but cannot be observed directly; the component population is heterogeneous. These parameters must therefore be inferred by observing the real-time degradation signal. We model this situation as a partially observable Markov decision process (POMDP) so that decision making and learning are integrated. We collapse the information state space of this POMDP to three dimensions so that optimal policies can be analyzed and computed tractably. Results: The optimal policy is a state dependent control limit. The control limit increases with age but may decrease as a result of other information in the degradation signal. Numerical case study analyses reveal that integration of learning and decision making leads to cost reductions of 10.50% relative to approaches that do not learn from the real-time signal and 4.28% relative to approaches that separate learning and decision making. Managerial implications: Real-time sensor information can reduce the cost of maintenance and unplanned downtime by a considerable amount. The integration of learning and decision making is tractably possible for industrial systems with our state space collapse. Finally, the benefit of our model increases with the amount of data available for initial model calibration, whereas additional data are much less valuable for approaches that ignore population heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.