Rationale The endocannabinoid system makes critical contributions to reward processing, motivation, and behavioral control. Repeated exposure to THC or other cannabinoid drugs can cause persistent adaptions in the endocannabinoid system and associated neural circuitry. It remains unclear how such treatments affect the way rewards are processed and pursued. Objective and methods We examined if repeated THC exposure (5 mg/kg/day for 14 days) during adolescence or adulthood led to long-term changes in rats’ capacity to flexibly encode and use action-outcome associations for goal-directed decision making. Effects on hedonic feeding and progressive ratio responding were also assessed. Results THC exposure had no effect on rats’ ability to flexibly select actions following reward devaluation. However, instrumental contingency degradation learning, which involves avoiding an action that is unnecessary for reward delivery, was augmented in rats with a history of adult but not adolescent THC exposure. THC-exposed rats also displayed more vigorous instrumental behavior in this study, suggesting a motivational enhancement. A separate experiment found that while THC exposure had no effect on hedonic feeding behavior, it increased rats’ willingness to work for food on a progressive ratio schedule, an effect that was more pronounced when THC was administered to adults. Adolescent and adult THC exposure had opposing effects on the CB1 receptor dependence of progressive ratio performance, decreasing and increasing sensitivity to rimonabant-induced behavioral suppression, respectively. Conclusions Our findings reveal that exposure to a translationally relevant THC exposure regimen induces long-lasting, age-dependent alterations in cognitive and motivational processes that regulate the pursuit of rewards.
The Pavlovian-instrumental transfer (PIT) paradigm is widely used to assay the motivational influence of reward-predictive cues, reflected by their ability to invigorate instrumental behavior. Leading theories assume that a cue's motivational properties are tied to predicted reward value. We outline an alternative view that recognizes that reward-predictive cues may suppress rather than motivate instrumental behavior under certain conditions, an effect termed positive conditioned suppression. We posit that cues signaling imminent reward delivery tend to inhibit instrumental behavior, which is exploratory by nature, in order to facilitate efficient retrieval of the expected reward. According to this view, the motivation to engage in instrumental behavior during a cue should be inversely related to the value of the predicted reward, since there is more to lose by failing to secure a high-value reward than a low-value reward. We tested this hypothesis in rats using a PIT protocol known to induce positive conditioned suppression. In Experiment 1, cues signaling different reward magnitudes elicited distinct response patterns. Whereas the one-pellet cue increased instrumental behavior, cues signaling three or nine pellets suppressed instrumental behavior and elicited high levels of food-port activity. Experiment 2 found that reward-predictive cues suppressed instrumental behavior and increased food-port activity in a flexible manner that was disrupted by post-training reward devaluation. Further analyses suggest that these findings were not driven by overt competition between the instrumental and food-port responses. We discuss how the PIT task may provide a useful tool for studying cognitive control over cue-motivated behavior in rodents.
Rationale: The endocannabinoid system makes critical contributions to reward processing, motivation, and behavioral control. Repeated exposure to THC or other cannabinoid drugs can cause persistent adaptions in the endocannabinoid system and associated neural circuitry. It remains unclear how such treatments affect the way rewards are processed and pursued. Objective and methods: We examined if repeated THC exposure (5 mg/kg/day for 14 days) during adolescence or adulthood led to long-term changes in rats' capacity to flexibly encode and use action-outcome associations for goal-directed decision making. Effects on hedonic feeding and progressive ratio responding were also assessed. Results: THC exposure had no effect on rats' ability to flexibly select actions following reward devaluation. However, instrumental contingency degradation learning, which involves avoiding an action that is unnecessary for reward delivery, was augmented in rats with a history of adult but not adolescent THC exposure. THC-exposed rats also displayed more vigorous instrumental behavior in this study, suggesting a motivational enhancement. A separate experiment found that while THC exposure had no effect on hedonic feeding behavior, it increased rats' willingness to work for food on a progressive ratio schedule, an effect that was more pronounced when THC was administered to adults. Adolescent and adult THC exposure had opposing effects on the CB1-receptor dependence of progressive ratio performance, decreasing and increasing sensitivity to rimonabant-induced behavioral suppression, respectively. Conclusions: Our findings reveal that exposure to a translationally relevant THC exposure regimen induces long-lasting, age-dependent alterations in cognitive and motivational processes that regulate the pursuit of rewards.
The dorsomedial prefrontal cortex (dmPFC) is known to make important contributions to flexible, reward-motivated behavior. However, it remains unclear if the dmPFC is involved in regulating the expression of Pavlovian incentive motivation, the process through which reward-paired cues promote instrumental reward-seeking behavior, which is modeled in rats using the Pavlovian-instrumental transfer (PIT) task. The current study examined this question using a bidirectional chemogenetic strategy in which inhibitory (hM4Di) or excitatory (hM3Dq) designer G-protein coupled receptors were virally expressed in dmPFC neurons, allowing us to later stimulate or inhibit this region by administering CNO prior to PIT testing. We found that dmPFC inhibition did not alter the tendency for a reward-paired cue to instigate instrumental reward-seeking behavior, whereas dmPFC stimulation disrupted the expression of this motivational influence. Neither treatment altered cue-elicited anticipatory activity at the reward-delivery port, indicating that dmPFC stimulation did not lead to more widespread motor suppression. A reporter-only control experiment indicated that our CNO treatment did not have non-specific behavioral effects. Thus, the dmPFC does not mediate the expression of Pavlovian incentive motivation but instead has the capacity to exert pronounced inhibitory control over this process, suggesting that it is involved in adaptively regulating cue-motivated behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.