Ornithischian dinosaurs were primitively bipedal with forelimbs modified for grasping, but quadrupedalism evolved in the clade on at least three occasions independently. Outside of Ornithischia, quadrupedality from bipedal ancestors has only evolved on two other occasions, making this one of the rarest locomotory transitions in tetrapod evolutionary history. The osteological and myological changes associated with these transitions have only recently been documented, and the biomechanical consequences of these changes remain to be examined. Here, we review previous approaches to understanding locomotion in extinct animals, which can be broadly split into form-function approaches using analogy based on extant animals, limb-bone scaling, and computational approaches. We then carry out the first systematic attempt to quantify changes in locomotor muscle function in bipedal and quadrupedal ornithischian dinosaurs. Using three-dimensional computational modelling of the major pelvic locomotor muscle moment arms, we examine similarities and differences among individual taxa, between quadrupedal and bipedal taxa, and among taxa representing the three major ornithischian lineages (Thyreophora, Ornithopoda, Marginocephalia). Our results suggest that the ceratopsid Chasmosaurus and the ornithopod Hypsilophodon have relatively low moment arms for most muscles and most functions, perhaps suggesting poor locomotor performance in these taxa. Quadrupeds have higher abductor moment arms than bipeds, which we suggest is due to the overall wider bodies of the quadrupeds modelled. A peak in extensor moment arms at more extended hip angles and lower medial rotator moment arms in quadrupeds than in bipeds may be due to a more columnar hindlimb and loss of medial rotation as a form of lateral limb support in quadrupeds. We are not able to identify trends in moment arm evolution across Ornithischia as a whole, suggesting that the bipedal ancestry of ornithischians did not constrain the development of quadrupedal locomotion via a limited number of functional pathways. Functional anatomy appears to have had a greater effect on moment arms than phylogeny, and the differences identified between individual taxa and individual clades may relate to differences in locomotor performance required for living in different environments or for clade-specific behaviours.
Bipedal locomotion is a defining characteristic of humans and birds and has a profound effect on how these groups interact with their environment. Results from extensive hominin research indicate that there exists an intermediate stage in hominin evolution—facultative bipedality—between obligate quadrupedality and obligate bipedality that uses both forms of locomotion. It is assumed that archosaur locomotor evolution followed this sequence of functional and hence character-state evolution. However, this assumption has never been tested in a broad phylogenetic context. We test whether facultative bipedality is a transitionary state of locomotor mode evolution in the most recent early archosaur phylogenies using maximum-likelihood ancestral state reconstructions for the first time. Across a total of seven independent transitions from quadrupedality to a state of obligate bipedality, we find that facultative bipedality exists as an intermediary mode only once, despite being acquired a total of 14 times. We also report more independent acquisitions of obligate bipedality in archosaurs than previously hypothesized, suggesting that locomotor mode is more evolutionarily fluid than expected and more readily experimented with in these reptiles.
Tooth counts are commonly recorded in fossil diapsid reptiles and have been used for taxonomic and phylogenetic purposes under the assumption that differences in the number of teeth are largely explained by interspecific variation. Although phylogeny is almost certainly one of the greatest factors influencing tooth count, the relative role of intraspecific variation is difficult, and often impossible, to test in the fossil record given the sample sizes available to palaeontologists and, as such, is best investigated using extant models. Intraspecific variation (largely manifested as size-related or ontogenetic variation) in tooth counts has been examined in extant squamates (lizards and snakes) but is poorly understood in archosaurs (crocodylians and dinosaurs). Here, we document tooth count variation in two species of extant crocodylians (Alligator mississippiensis and Crocodylus porosus) as well as a large varanid lizard (Varanus komodoensis). We test the hypothesis that variation in tooth count is driven primarily by growth and thus predict significant correlations between tooth count and size, as well as differences in the frequency of deviation from the modal tooth count in the premaxilla, maxilla, and dentary. In addition to tooth counts, we also document tooth allometry in each species and compare these results with tooth count change through growth. Results reveal no correlation of tooth count with size in any element of any species examined here, with the exception of the premaxilla of C. porosus, which shows the loss of one tooth position. Based on the taxa examined here, we reject the hypothesis, as it is evident that variation in tooth count is not always significantly correlated with growth. However, growth trajectories of smaller reptilian taxa show increases in tooth counts and, although current samples are small, suggest potential correlates between tooth count trajectories and adult size. Nevertheless, interspecific variation in growth patterns underscores the importance of considering and understanding growth when constructing taxonomic and phylogenetic characters, in particular for fossil taxa where ontogenetic patterns are difficult to reconstruct.
Quadrupedality evolved four independent times in dinosaurs; however, the constraints associated with these transitions in limb anatomy and function remain poorly understood, in particular the evolution of forearm posture and rotational ability (i.e., active pronation and supination). Results of previous qualitative studies are inconsistent, likely due to an inability to quantitatively assess the likelihood of their conclusions. We attempt to quantify antebrachial posture and mobility using the radius bone because its morphology is distinct between extant sprawled taxa with a limited active pronation ability and parasagittal taxa that have an enhanced ability to actively pronate the manus. We used a sliding semi-landmark, outline-based geometric morphometric approach of the proximal radial head and a measurement of the angle of curvature of the radius in a sample of 189 mammals, 49 dinosaurs, 35 squamates, 16 birds, and 5 crocodilians. Our results of radial head morphology showed that quadrupedal ceratopsians, bipedal non-hadrosaurid ornithopods, and theropods had limited pronation/supination ability, and sauropodomorphs have unique radial head morphology that likely allowed limited rotational ability. However, the curvature of the radius showed that no dinosaurian clade had the ability to cross the radius about the ulna, suggesting parallel antebrachial elements for all quadrupedal dinosaurs. We conclude that the bipedal origins of all quadrupedal dinosaur clades could have allowed for greater disparity in forelimb posture than previously appreciated, and future studies on dinosaur posture should not limit their classifications to the overly simplistic extant dichotomy.
The evolution of vertebral fusion is a poorly understood phenomenon that results in the loss of mobility between sequential vertebrae. Non-pathological fusion of the anterior cervical vertebrae has evolved independently in numerous extant and extinct mammals and reptiles, suggesting that the formation of a 'syncervical' is an adaptation that arose to confer biomechanical advantage(s) in these lineages. We review syncervical anatomy and evolution in a broad phylogenetic context for the first time and provide a comprehensive summary of proposed adaptive hypotheses. The syncervical generally consists of two vertebrae (e.g. hornbills, porcupines, dolphins) but can include fusion of seven cervical vertebrae in some cetaceans. Based on the ecologies of taxa with this trait, cervical fusion most often occurs in fossorial and pelagic taxa. In fossorial taxa, the syncervical likely increases the out-lever force during head-lift digging. In cetaceans and ricochetal rodents, the syncervical may stabilize the head and neck during locomotion, although considerable variation exists in its composition without apparent variability in locomotion. Alternatively, the highly reduced cervical vertebral centra may require fusion to prevent mechanical failure of the vertebrae. In birds, the syncervical of hornbills may have evolved in response to their unique casque-butting behaviour, or due to increased head mass. The general correlation between ecological traits and the presence of a syncervical in extant taxa allows more accurate interpretation of extinct animals that also exhibit this unique trait. For example, syncervicals evolved independently in several groups of marine reptiles and may have functioned to stabilize the head at the craniocervical joint during pelagic locomotion, as in cetaceans. Overall, the origin and function of fused cervical vertebrae is poorly understood, emphasizing the need for future comparative biomechanical studies interpreted in an evolutionary context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.